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Abstract
This paper proposes a robust feature extraction method for auto-
matic speech recognition (ASR) systems in reverberant environ-
ment. In this method, a sub-band power envelope inverse filtering
algorithm based on the modulation transfer function (MTF), that
we have previously proposed, is incorporated as a front-end pro-
cessor for ASR. The impulse response of the room acoustics is as-
sumed to be exponential decay modulated white noise, and speech
is assumed to be temporal modulated white noise in each sub-band.
Therefore, the impulse response of the environment does not need
to be measured. Testing demonstrated that this algorithm can re-
store the temporal power envelope of reverberant speech in sub-
bands and thus reduce the loss of speech intelligibility caused by
reverberation. Testing of its ability to recognize digitized Japanese
speech was done by using reverberant speech created by simple
convolution of the room acoustics and speech. The algorithm had
a 32.1% higher error reduction rate (on average, for reverberation
times from 0.1 to 2.0 s) compared with the traditional cepstral
mean normalization (CMN) of the auditory power spectrum based
method (AFCC).
Index Terms: dereverberation, speech recognition, modulation
transfer function

1. Introduction
Achieving robust speech recognition in reverberant environment is
a big challenge in the speech recognition field. Reverberation can
be regarded as convolution processing between acoustic speech
and room acoustics. In a reverberant environment, the temporal
and spectral structure of speech is distorted by stochastic rever-
beration caused by room reflection characteristics. It is difficult
to distinguish clean speech signals in a reverberant environment
by using the statistical properties of the speech and noise. Thus,
the traditional noise reduction methods, such as spectral subtrac-
tion, Wiener filtering, and Bayesian estimation, which use differ-
ent statistical properties of speech and noise, do not work well in
reverberant environments. Several algorithms for reducing rever-
beration distortion have been proposed, e.g., cepstral mean nor-
malization (CMN) [1] and RASTA filtering [2]. However, they are
only suitable for short convolved noise or short reverberant situ-
ations. In actual room acoustics, reverberation time is far longer,
and the properties of a reverberant environment are time-variant
in a short time window. Several dereverberation algorithms using
single- or multi-microphones have been proposed for solving the
room reverberation problem. The basic principle of dereverbera-
tion is to estimate the impulse response of the room acoustics, and
then use inverse filtering to obtain the dereverberated speech [3].
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ever, estimating the impulse response of room acoustics from
observed reverberant speech it is very difficult. One approach
eech dereverberation without estimating the impulse response
e room acoustics is to use speech characteristics. For exam-
the harmonic structure of speech can be used [4]. However,
harmonic structure is usually distorted in reverberant speech
hard to extract.
Speech signals are highly temporally modulated, and most of

intelligibility information is encoded in temporal modula-
envelopes in each frequency band [5]. This means that, in

speech recognition task, we need only to restore the tempo-
nvelope of clean speech from the reverberant speech in each
uency band. We previously proposed a sub-band power enve-
inverse filtering algorithm based on the modulation transfer

tion (MTF) for dereverberating speech signals [6, 7]. It was
gned to be used as a front-end processor for automatic speech
gnition. Correlation and SNR measurements showed that it
roves power envelope restoration accuracy [6, 7], and testing

ed that it restores speech signals with a high level of speech
ligibility [8]. We have now tested its ability to recognize digi-
Japanese speech.

2. MTF-based sub-band power envelope
restoration

re we discuss modeling the reverberant effect, we will briefly
ribe the MTF concept. The complex MTF is defined [9] as:

M(ω) =

R∞
0

h(t)2 exp(jωt)dtR∞
0

h(t)2dt
, (1)

re h(t) is the impulse response of the room acoustics, and ω is
adian frequency. For room acoustics, a well-known stochastic
oximation of the impulse response is defined [9] as:

h(t) = eh(t)n1(t) = a exp(−6.9t/TR)n1(t), (2)

re eh(t) is the exponential decay temporal envelope, a is a
tant amplitude, and n1(t) is a random white noise. The corre-
ding MTF is obtained using:

m(ω) = |M(ω)| =

"
1 +

„
ω

TR

13.8

«2
#−1/2

. (3)

qs. (2) and (3), TR is the reverberant time defined as the time
ired for the power of h(t) to decay by 60 dB [6]. For a dom-
t frequency in the temporal envelope, Eq. (3) can be regarded
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as the modulation index, i.e., the degree of the relative fluctua-
tion in the normalized amplitude with respect to the dominant fre-
quency. On the basis of this characteristic, TR can be predicted
from a specific frequency by using the MTF.

We model the effect of room acoustics on speech signals based
on the MTF concept. The convolution distortion in sub-band rep-
resentation is written as

yn(t) = xn(t) ∗ h(t), n = 1, 2, · · · , N, (4)

where yn(t) and xn(t) are reverberant and clean speech signals in
the sub-band, n is the sub-band index, and N is the total number of
sub-bands. Using the temporal modulation property of the speech
signal, we model the sub-band speech, xn(t), as

xn(t) = ex,n(t)n2(t). (5)

The temporal envelope of sub-band n is ex,n(t). In Eqs. (2) and
(5), n1(t) is mutually independent white noise that satisfies

〈nk(t)nk(t − τ )〉 = δ(τ ), k = 1, 2 (6)

where < · > is the ensemble average operator. Using Eqs. (4) -
(6), the power envelope of yn(t) can be calculated [6] as:˙

yn(t)2
¸

= ey,n(t)2 = ex,n(t)2 ∗ eh(t)2. (7)

This equation shows that the restoration of ex,n(t)2 can be com-
pleted by deconvolution of ey,n(t)2 with eh(t)2. For discrete sig-
nals in z-transforms, the deconvolution is

Ex,n(z) =
Ey,n(z)

Eh(z)
, (8)

where Ex,n(z), Ey,n(z), and Eh(z) are the z-transforms of
ex,n(t)2, ey,n(t)2, and eh(t)2, respectively. Thus,

Eh(z) =
a2

1 − exp
“
− 13.8

TR·fs

”
z−1

. (9)

Substituting Eq. (9) into Eq. (8), we get

Ex,n(z) =
Ey,n(z)

a2

j
1 − exp

„
− 13.8

TR · fs

«
z−1

ff
. (10)

The power envelope of sub-band signal ex,n(t)2 can be restored
using the inverse z-transform of Ex,n(z). In Eq. (10), we need to
estimate parameters a and TR.

3. Algorithm implementation
Our sub-band power envelope inverse filtering algorithm was de-
veloped on the basis of the analysis above. As shown in Fig. 1,
the observed signal y(t) is decomposed into a series of frequency
sub-bands; envelope detectors then extract temporal modulation
envelopes ey,n(t)2. Given the co-modulation characteristics of
speech signals in sub-bands [7], we use a series of FIR-type band-
pass filters with a constant bandwidth of 100 Hz for the decom-
position. The extracted envelopes are used for inverse filtering,
which is controlled by estimated parameters â and T̂R. The final
output is the restored or dereverberated power envelope, êx,n(t)2,
for each frequency band. The power envelope inverse filtering is
done for each sub-band in three steps.
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ure 1: Sub-band power envelope inverse filtering algorithm.

Extract sub-band power envelopes

-pass filtering with half-wave rectification (HWR) is widely
for sub-band temporal envelope estimation in computational

tory models. However, since we assume the carrier in each
band is white noise rather than a monotone sine wave, we ex-
the power envelopes using low-pass filtering of the Hilbert

sform of the sub-band signals [6, 7]:

êy,n(t)2 = LPF
ˆ|yn(t) + jHilbert(yn(t))|2˜ , (11)

re LPF[·] is a low-pass filtering operator, and Hilbert(·) is the
ert transform. We set the cut-off frequency of the low pass fil-
g to 20 Hz in order to keep most of the important modulation
rmation for speech perception.

estimate parameters of room acoustics

estimate parameters TR and a. In Eq. (??), [6] using

= max

 
arg min

TR,min<TR<TR,max

Z T

0

˛̨
min

`
êx,n,TR(t)2, 0

´˛̨
dt

!
,

(12)

â =

s
1/

Z T

0

exp

„
−13.8t

T̂R

«
dt (13)

re T is signal duration and êx,n,TR(t)2 represents the candi-
s of the restored power envelope as a function of TR. The
in and TR,max are the lower and upper bounds of TR. Equa-

s (12) and (13) are described in detail elsewhere [6, 7].

Inverse filter of power envelopes

r the power envelopes (ey,n(t)2) and the parameters of the
acoustics (T̂R and â) are obtained, the power envelopes are

rse filtered using Eq. (10) to restore the power envelopes of
dereverberated speech in the sub-bands. The effects of the al-
thm are illustrated in Fig 2, which shows the processing of
tized Japanese speech in three sub-bands with center frequen-
of 1.0, 2.0, and 3.0 kHz.
The solid curves show the sub-band power envelopes of clean
ch in the three sub-bands, while the dashed curves in the
panels show the power envelopes of reverberant speech (with
= 0.7 s) extracted without any dereverberation processing.
sub-band power envelopes of the reverberant signal diffuse
the enveloped peaks with an exponential decay that dis-

the subsequent temporal envelopes of the signal. The dashed
es in the right panels show the power envelopes extracted us-
the proposed dereverberation processing. In each sub-band,
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Figure 2: Sub-band power envelope of clean and reverberant
speech without (left) and with (right) dereverberation processing.

the restored power envelope is closer to the power envelope of the
clean speech signal. Consequently, if the restored sub-band power
envelope is used to extract speech features for speech recognition,
the recognition of reverberant speech should be improved.

4. Speech recognition for reverberant speech
We used the dereverberation algorithm as a front-end processor
for automatic speech recognition (ASR) to test its recognition of
reverberant speech. We used clean speech from AURORA-2J as
speech material [10] and used 8840 clean speech sentences to train
the acoustic models. For testing, we used 1001 reverberant speech
sentences produced artificially by convolving the speech signals
with a room acoustic impulse response signal with a reverberation
time of 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9 or 2.0 s.
The sampling frequency, fs, was 8 kHz, so we used 40 sub-band
channels (N = 40) to cover the frequency region from 0 to 4 kHz.

The speech features were extracted using the restoration pro-
cess described above, as Illustrated in Fig. 3. The input used to
restore the power envelopes of the clean speech in each sub-band
were smoothing blocks comprising frame integration and log com-
pression. Because the power envelope inverse filtering is high-
pass, low-pass filtering with forgotten parameter λ was used for
smoothing the envelope dips in each sub-band:

Îi(t) = λÎi(t − 1) + (1 − λ)Ii(t), (14)

where Ii(t) is the original restored sub-band power envelope, and
Îi(t) is the smoothed output. We set λ to 0.99. For the frame
integration, we used a 32-ms frame length with a hamming win-
dow and a frame rate of 16-ms. After the integrated spectrum was
obtained, log compression was done. The DCT was used for di-
mensional decorrelation. The first 12 dimensions of the decorre-
lated log power spectrum were used (the zero-th order coefficient
was discarded). Combining the log power energy, we obtained
13-dimension static feature sets. Together with their first and sec-
ond order delta dynamic values, 39 dimensions feature vectors
were formed. HTK [1] was used for training the HMM acous-
tic models. The acoustic models were configured the same as in
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re 3: Speech feature extraction based on restored power enve-
in each sub-band.

URORA-2J experiments. We investigated the effects of some
essing methods on ASR performance [10].

Effect of band-pass filtering bandwidth

band-pass filtering based feature extraction is widely accepted
eing more robust in most additive nose conditions than con-
t band-pass filtering. However, because our MTF-based dere-
eration is based on sub-band power envelope inverse process-
the power envelope should have a co-modulation characteris-
n one sub-band while satisfying the MTF concept. We care-

choose the bandwidth by considering the trade-off between
. For an initial experiment, we tested the effect of using

valent rectangular bandwidths (ERBs) of gammatone filters
constant filter bandwidths on recognition performance. We
d that a constant bandwidth of 100 Hz is more suitable for
fying the envelope co-modulation property and the MTF con-
. Therefore, in our MTF-based dereverberation experiments,
sed band-pass filters with a 100 Hz bandwidth.

Effect of over- and under-dereverberation

he inverse filtering, the estimation of parameter TR for the
acoustics is important. Our algorithm determines the TR that

st for restoring the power envelope and so that the estimated
es are not the same in all sub-bands. Moreover, most of the
ated values are not equal to the original value. In the case of

-estimation, the restored power envelope in each sub-band is
-pass filtered with a higher end frequency than used for an ac-
te estimation, and vice versa in the case of under-estimation.
tested the effect on ASR of over and under-dereverberation
found that both over- and under-dereverberation reduce recog-
n accuracy compared with our estimated T̂R because they are

appropriate for achieving the best restoration.

Comparison with traditional feature extraction methods

used RASTA filtering [2] of the auditory power spectrum based
ch feature extraction and CMN of the auditory power spec-
based cepstral coefficients for comparison purposes. The re-
are shown in Fig. 4, where “AFCC-RASTA” represents cep-
feature extraction is based on RASTA filtering on the log au-

ry power spectrum of each sub-band, and “AFCC-CMN” rep-
nts CMN of the auditory power spectral based cepstral coeffi-
t. The auditory power spectrum was calculated using gamma-
band filters with ERBs and half-wave rectifying in each sub-
. “No processing” represents using the proposed constant-
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Figure 4: Comparison of reverberant speech recognition rates.

bandwidth band-pass filtering and power envelope extraction with-
out dereverberation. “Proposed” represents cepstral feature extrac-
tion based on our proposed MTF-based sub-band power envelope
estimation with dereverberation.

As shown in Fig. 4, the speech recognition rate decreased as
the reverberation time was increased; the rate of decrease was es-
pecially high when the reverberation time was long (TR > 0.5 s).
When it was (TR < 0.3 s), all the feature extraction methods per-
formed well (recognition rate > 90%). However, for reverberation
times of 0.5 to 2.0 s, the recognition rates of AFCC-RASTA and
AFCC-CMN decreased more sharply than those of our proposed
methods. On average, for reverberation times from 0.1 s to 2.0
s, the proposed MTF-based dereverberation algorithm had a 32.1
% better error reduction rate that AFCC-CMN; it was 9.86 % bet-
ter the proposed band-pass filtering and power envelope estimation
without dereverberation processing (No processing).

5. Discussion and conclusion

Our analysis and experiments demonstrated that our MTF-based
sub-band power envelope inverse filtering algorithm improves
the robustness of speech recognition performance for reverber-
ant speech, especially for long reverberant situations. The re-
sults showed: (1) MTF-based dereverberation can restore the sub-
band temporal power envelope of speech, thereby improving auto-
matic speech recognition performance for reverberant speech; (2)
band-pass filtering with a constant bandwidth of 100 Hz is bet-
ter than that with ERB for dereverberation; and (3) under- and
over-dereverberation based feature extraction both degrade ASR
performance.

Comparison of the recognition rates when the proposed
method was used with that when no processing was used showed
that the recognition rate was still relatively low. This suggests that
we need to reconsider how some things are handled. For example,
dereverberation is done using the estimated reverberation time in
each sub-band independently. If there is even a small error in the
estimations, the extracted feature may differ greatly from the ac-
tual feature due to temporal misalignment between sub-bands. A
more accurate way is thus need for estimating reverberation time.
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also need to find a more accurate method of estimating the
band temporal power envelopes because the inverse filtering
ereverberation is based on these envelopes. We need a way to
ate the sub-band temporal power envelope based on stochas-

ignal processing for both Gaussian and non-Gaussian white-
e carriers. Finally, our experiments were based on artificial
rberant speech. We plan to record a speech data corpus in an
al reverberant environment and use if for testing.
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