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Abstract
Nonmodal phonation occurs when glottal pulses exhibit non-
uniform pulse-to-pulse characteristics such as irregular
spacings, amplitudes, and/or shapes. The analysis of regions of
such nonmodality has application to automatic speech, speaker,
language, and dialect recognition. In this paper, we examine 
the usefulness of a technique called minimum-entropy
deconvolution, or MED [1], for the analysis of pulse events in 
nonmodal speech. Our study presents evidence for both natural 
and synthetic speech that MED decomposes nonmodal
phonation into a series of sharp pulses and a set of mixed-
phase impulse responses. We show that the estimated impulse
responses are quantitatively similar to those in our synthesis
model. A hybrid method incorporating aspects of both MED 
and linear prediction is also introduced. We show preliminary
evidence that the hybrid method has benefit over MED alone 
for composite impulse-response estimation by being more
robust to short-time windowing effects as well as a speech 
aspiration noise component.
Index Terms: inverse filtering, nonmodal speech, glottal
pulse, minimum entropy

1. Introduction
Observations of nonmodal phonation, with glottal pulses
having non-uniform characteristics such as irregular spacings 
and amplitudes have been often reported in speech science
literature. Instances of this class of phonation have been
referred to using terms such as “creak,” “vocal fry,”
“diplophonia,” “irregularity,” and “glottalization.” In this
paper, we study a method of analyzing individual glottal 
events, which are common underlying units of these phonation
types. Figure 1 shows a nonmodal phonation manifesting at the 
end of a natural utterance.

We are motivated to study nonmodal phonation for several 
reasons. First, nonmodal phonation is a common occurrence in
the speech of both normal and disordered speakers. One study
investigating this type of phonation has reported that a set of
normal speakers exhibited nonmodal behavior for between 
13 and 44 percent of their word-initial vowels [2]. Another 
reason to study nonmodal phonation is that the timing, 
amplitude, and other characteristics of individual glottal pulses
during nonmodal regions may be dependent upon linguistic 
cues, speaker identity, language, and dialect. Pulse
characteristics may also be dependent on vocal-fold pathologies.

A common model for the generation of voiced speech is a
volume-velocity source waveform, filtered by both an all-pole
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inimum-phase vocal tract filter and a radiation characteristic
 the mouth to produce an acoustic pressure signal. As an
ditional step, each source pulse can be modeled as a pure
pulse source convolved with a mixed-phase source
sponse [3]. In this paper, we call the mixed-phase
mbination of the source response, vocal tract, and radiation
aracteristic the composite impulse response. Our primary

oals are to (1) estimate the composite impulse response of a
iven speech region and (2) generate the source impulse
quence using an inverse filter derived from the composite 
pulse response. One motivation for obtaining this

presentation is the use of timings and amplitudes of the 
urce impulse sequence in automatic speech, speaker,
nguage, and dialect recognition systems.

igure 1. A section of natural nonmodal phonation from the
d of the word “umbrella” in a normal speaker.

 particular, we examine the application of an algorithm called
inimum-entropy deconvolution (MED) [1] to the problem of

etermining the composite impulse response and associated
urce impulse sequence in sections of nonmodal phonation.

he use of MED on near-modal speech to derive a pulse-like
sidual has been studied previously with promising results [4].
e build upon the previous work by showing MED’s
plication to deriving a pulse-like signal from highly-

onmodal synthetic and natural phonation and to estimating
mposite impulse responses. In addition, we propose a hybrid
ethod that combines MED with conventional linear

rediction. Evidence is presented that this hybrid method has 
enefit over MED alone for composite impulse-response 
timation by being more robust to a speech aspiration noise
mponent as well as to the effects of short-time windowing.

2. Minimum-Entropy Deconvolution
 this paper, we assume that nonmodal phonation is the result 

f convolving a source impulse sequence with a composite
pulse response. A reasonable approach to the

ecomposition problem, then, is to design an inverse-filtering
ethod that yields an impulse-like residual. An alternative to 
near prediction, a traditional method for deriving such a 
ulse-like residual, is a technique from the geophysical
terature called minimum-entropy deconvolution (MED). This 
ethod contrasts linear prediction primarily in two ways.
irst, while linear prediction maximizes the entropy in the
sidual, MED attempts to minimize disorder. In effect, it
eates a filter that generates the most “pulse-like” residual for
given input. The second way in which MED and linear
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prediction differ is that the MED filter is able to generate pure
impulses from a mixed-phase system as from a composite
speech impulse response. Inverse filtering with linear
prediction, on the other hand, can create an impulse sequence 
for only a minimum-phase system.

MED achieves minimum entropy in its output by solving for a 
set of filter coefficients that maximize a criteria of
pulse-likeness called the varimax norm [1]:

2

24 ][][
jj

jxjxV (1)

where x[j] is the input signal. The varimax norm is a kind of
normalized 4th-order moment, kurtosis, and is higher for
signals with a small number of sharp pulses and closer to zero
for signals with less structure. The problem of maximizing the
varimax norm of the residual is nonlinear and requires an
iterative approach as detailed in [1] and [4].

3. Application of MED to Nonmodal Speech
MED may be applied to continuous speech using analysis with
overlapping windows. In our implementation, we process the 
speech using 20-ms Hamming windows with 50-percent
overlap. Creation of the residual from MED filters is
performed using frame-wise analysis and an overlap-and-save
synthesis approach [5]. Our full implementation of such a
system with MED is beyond the scope of this paper, and does 
not yet exist in the literature. Analysis using a single large
analysis window is described in [4].

Figure 2. Application of MED to synthetic nonmodal 
phonation. The bottom two panels show the application of the
algorithm to the acoustic wave in the top panel. Linear
prediction results are shown for comparison.

Figure 2 shows the results of applying MED to synthetic
nonmodal phonation. The top two panes depict the synthetic
volume-velocity source and resulting acoustic signal. This

in
sh

particular case contains source pulses with both nonuniform 
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terpulse timings and amplitudes. The two remaining panes
ow the results of using a 15

of linear

of pulse-

ed composite

-Prediction/MED Approach 
e h norm

th-order linear prediction and a
5th-order MED to obtain a residual. These values were used
ecause increasing beyond order 15 and 25 for linear
rediction and MED, respectively, gave negligible
erformance gain. The output of linear prediction is less pulse-
ke than the output of MED, with activity to the left of the
rimary output impulses. In contrast, MED yields a
ualitatively more impulse-like residual; there is less activity
 the sides of the main pulses. In both examples, the most
pulse-like activity corresponds to near the closing point of 

e synthetic volume-velocity source. Figure 3 repeats this
mparison for a natural nonmodal utterance. Although there
ists no standard “ground truth” for pulse locations in natural 

onmodal phonation, we see that MED is again qualitatively
ore pulse-like.

Linear Prediction

MED

Acoustic

Time

de

igure 3. Output of MED compared with the output
rediction for a natural speech signal. The MED residual is 
ore pulse-like than the linear-prediction residual.

sing the varimax norm as an objective measure
keness, we find that MED is the most pulse-like compared
ith linear prediction and the windowed input waveform for 
oth the natural and synthetic cases. Across 11 10-ms frames
f the natural nonmodal phonation in Figure 3, MED has an 
erage varimax norm of 0.24 versus 0.06 for linear prediction
d 0.04 for the input. For 126 frames of the synthetic case in 

igure 2, MED has an average varimax norm of 0.66 versus
.34 for linear prediction and 0.04 for the input.

e can also calculate how well the estimat
pulse responses from MED and linear prediction fit the true
mposite impulse response using the mean-squared error.

ince the true impulse-response is not known for the natural
eech, we can only perform this test for synthetic utterances.

or 126 frames of synthetic nonmodal phonation of Figure 2, 
ED yields a closer fit to the known composite impulse 
sponse. The mean-squared error is on average 0.18 versus

.44 for linear prediction.

4. Hybrid Linear
ave shown that MED produces a higher varimax

d a closer fit to a known composite impulse-response than
near prediction, but this result is not surprising. The
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composite impulse response we aim to recover is represented
well as the output of a mixed-phase system [3, 6]. Linear
prediction effectively “flips” maximum-phase pole estimates to
their minimum-phase reciprocal locations. In this section, we
present a modification of standard linear prediction capable of
obtaining an improved mean-squared error fit to mixed-phase 
impulse responses over linear prediction.

Figure 4. Average (a) varimax norm and (b) mean-squared
error measurements across 126 input frames of synthetic
nonmodal phonation. Solid horizontal lines indicate linear
prediction, hybrid method, and MED measurements. Dashed
and dash-dot lines show results for the maximum and average 
varimax norm respectively for each number of flips of linear-
prediction-derived zeros across the unit circle.

The least-mean-square residual criteria upon which linear F

Varimax Norm for Synthetic Speech
(a)

(b)
Mean-Squared Error for Synthetic Speech

prediction is based cannot be used to determine which location 
for each pole—inside or outside the unit circle—is “better.”
Instead we need an additional criterion. We propose to use the
varimax norm criteria from MED to choose among the possible 
configurations. In this way, a filter is created that yields a 
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igure 5 compares the c pulse responses derived

near-prediction-based residual with the maximum pulse-
keness possible. We will show that this combination allows
s to estimate realistic composite impulse response shapes. For 
 specified order, the solution we use is to (1) try every
ossible configuration of zeros inside and outside the unit 
ircle, (2) find the residual resulting from each configuration,
nd (3) keep the configuration yielding the maximum varimax
orm. The complexity of this technique grows exponentially
ith increasing linear-prediction order, but is manageable for 
pical orders. We show here results for an order-15 case. 

igure 4(a) compares the varimax norm of the input sign
e residuals using linear prediction, MED, and the hybrid
ethod for 126 frames of the synthetic nonmodal phonation

xample of Figure 2. The results show that the MED residual is 
e most pulse-like on average out of all of the methods
llowed by the hybrid method, linear prediction, and the input
aveform. In this figure, we also illustrate how different

flips” of the linear prediction zeros affect the varimax norm.
he average (dash-dot line) and maximum (dashed line) values
f the varimax norm are plotted for each number of zeros 
ipped across the unit circle to their reciprocals. We can see
at, in this example, the maximum varimax norm comes from 
ipping four zeros outside of the unit circle. Figure 4(b)
ompares the mean-squared errors of the best fits between the 
omposite impulse response derived using each method and the
nown impulse response. MED again yields the lowest mean-
uared error fit followed by the hybrid method and linear

rediction. We can see from the dashed curve that out of all the
near-prediction zero configurations, the number of zeros
utside the unit circle yielding the largest varimax norm also 
ields the smallest mean-squared error. This finding supports 
e idea that a pulse –like residual is an important indicator of a

ood estimate of the composite impulse response. 

5. Further Evaluation of Composite Impulse
Estimates
omposite im

om each of the methods for examples of both natural and 
nthetic speech. In both cases, the hybrid approach is seen to

ualitatively provide advantages over the conventional linear-
rediction output, for example allowing representation of the
egative peak in the impulse response. The MED impulse-
Hybrid LP MED

Figure 5. Output of three different techniques
used to estimate the composite impulse-response 
for a natural and synthetic utterance. The known
true composite impulse response is shown for the 
synthetic case for comparison. 

40 ms 

Natural

Synthetic

Known Synthetic Composite
Impulse Response: 

Acoustic
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response estimate appears to have an improved fit over linear
prediction for the real and synthetic cases. Despite producing
estimates like the one shown for most frames, however, MED
has a tendency to occasionally yield unrealistic composite
impulse-response shapes, even for our synthetic example. An
example of this phenomenon is shown for synthetic speech in
Figure 6. While the hybrid method yields a reasonable impulse
response, which decays in about 20 ms, MED estimates a 
composite impulse response that rings significantly for over 
100 ms. As can be seen in the acoustic waveform, the pulses in
this example occur close to the edges of the analysis window.
This distorts the waveform that MED and linear prediction
process. Based on this and other examples, it appears that the
hybrid method is not prone to the unrealistic “ringing” behavior
that can occur with MED.

The ringing behavior seen in the previous example occurs in

from synthetic nonmodal phonation 

tely understand

In this paper, we hav applying MED to

F

less than 5 percent of the synthetic speech frames analyzed
and is likely due to the location of the excitation near the
edges of the window. We have further evidence, however, that
MED is overall not as robust as the hybrid method when 
confronted with real speech. Subjectively, the composite
impulse response estimates contain ringing and other problems
more often for real speech. Toward understanding this
sensitivity, we simulate one perturbation typical of real
speech—increased aspiration noise—in our synthetic
utterance, and visualize how the average of our three methods
respond to this change. 

Figure 7 shows results
with added aspiration noise varied from 0 dB to 45 dB to 
60 dB. In estimating the composite impulse response, MED 
appears to be significantly more sensitive to the increased
aspiration noise, yielding a change in average mean-squared
error of more than 0.6. In contrast, the error in the hybrid
method changes by only about 0.35. In the varimax-norm plot, 
it can be observed that there is a decrease for all three methods
as the amount of aspiration noise is increased.

At this point in the research, we do not comple
why MED is sensitive to deviations from the assumed model
and to the position of the signal in the window. These
problems, however, illustrate that the hybrid method can 
produce an improved composite impulse response over MED
under certain conditions.

6. Conclusions 
e shown the result of

the problems of decomposing nonmodal phonation into a 
pulse-like residual and a realistic composite impulse response. 
In particular, we have shown evidence that both MED and a 
hybrid method combining linear prediction and MED can be 
used to obtain pulse-like residuals and accurate composite
impulse responses. Although MED on average produces both
the most pulse-like residual and the best impulse-response fit 
for synthetic data, we have shown evidence that it is not as
robust as the hybrid method. In particular, it occasionally
produces composite impulse responses that “ring” excessively 
and is also sensitive to deviations of the underlying pulse-
excitation model on which it is based. In future work, we plan
to combine MED and the hybrid method to exploit their
individual strengths and obtain more robust estimates of the
composite impulse response. 
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od to aigure 6. Application of MED and the hybr
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ame of synthetic nonmodal phonation that yields an
nrealistic estimated glottal impulse response for MED. The 
ED impulse response “rings” for close to 200 ms as can be 
en in the bottom-right panel. 
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igure 7. Comparison of mean varimax norm and mean-
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