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Abstract

In this study, we investigate methods of (a) detecting

phonetic boundaries directly from acoustics, and (b) inte-

grating these into HMM-based speech recognition. We test

the hypothesis that detecting phone boundaries may be eas-

ier using phonological features rather than phonetic or di-

rect acoustic information. We also show how HMMs can

be more attuned to the transition of phone boundaries by

explicitly modeling transition states. Using a 5-state HMM

phone model, we improve the accuracy of phone recogni-

tion on the TIMIT task.

Index Terms: phonetic boundaries, phonological features,
HMM topologies.

1. Introduction

In traditional Hidden Markov Model (HMM) approaches to

automatic speech recognition, phonetic states are utilized

to model the acoustics of speech. Some of the drawbacks

of this modeling are well known: for example, the inde-

pendence of observations make it difficult to model well

both steady-state and dynamic situations in the same kind of

model. In essence, phone boundaries are treated the same

as the steady-state portions of phones.

However, several approaches have focused particularly

on the boundaries between phones. In [1, 2], Morgan et
al. proposed using Avents (Acoustic events) to model the
transitions between phones in a hybrid HMM-ANN system.

In this work, neural networks were used to predict phonetic

(diphone) boundaries, as well as a non-perceiving state. The

authors found that the Avent models were able to represent

almost as much information as steady-state representations.

The focus on phonetic boundaries have also been used

directly in Gaussian-based HMM systems utilizing land-
mark features. For example, in [3] acoustic observations
were allowed to directly affect transition probabilities (in-

stead of just state emission probabilities) in an HMM. By

training Gaussian mixtures that focused on the derivative

LPC cepstra to condition the probability of transitioning

from one phone to another, theywere able to improvemono-
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ne TIMIT recognition slightly.1

The advent of tandem training [4] has conjoined the hy-

and traditional modeling worlds by utilizing neural net-

ks as discriminative front ends for HMM systems. Thus,

now possible to ask: “Can a discriminatively-trained

ne boundary detector be used within traditional HMM

hods for improving speech recognition?” In this work,

explore simple methods for incorporating estimates of

presence of phone boundaries into an HTK system [5].

One question that follows from this is what the input to

honetic boundary detector should be. In recent years,

re attention has been given to phonological features in

(e.g [6, 7] inter alia), such as sonority or place of ar-
lation. Some researchers claim that these features are

e flexible in modeling spontaneous speech and more ro-

t in modeling pronunciation variations. If one has a set

honological feature detectors, the patterns of change in

se detectors may lead to good boundary detection.

Motivated by these idea, two experiments are conducted

his paper. The first is to explore various phone bound-

detection techniques by comparing the performance of

erent input features in the task of phone boundary detec-

(Section 2). After we obtain the boundary information,

to integrate the boundary information into current ASR

ems remains a question. We present experiments show-

that explicitly modeling the entering and exiting state of

hone as a separate, one frame distribution can improve

IT phone recognition, especially when state boundary

mates are included. These results are addressed in Sec-

3. Conclusions are presented in Section 4.

2. Boundary Detection

Input features

ee components need to be chosen for a phone bound-

detection system: the time-frequency resolution, the ex-

ted features to represent speech signals and the classifi-

The authors mention in this paper is that phone recognition correctness

raised from 58.6% to 62.0% through this method, although an analysis

eir results table shows that the corresponding increase in insertions

ns the accuracy improvement was only from 44.9% to 45.2%.
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cation schemes.

In order to integrate the phone boundary information

into existing HMM-based ASR systems, the time-frequency

resolution was designed to be a constant, with frames cal-

culated over a 25ms window shifting every 10ms. We

assume the presence of labeled training data (either from

Viterbi alignment with a pre-trained recognizer, or (as is

used here) phonetic labeling provided by linguists). Given

the frame definitions and labeling, each frame was labeled

as “Left Boundary (LB)”, “Right Boundary (RB)” or “Non-

Boundary (NB)”, depending on its phonetic boundary sta-

tus. For example, if a sequence of frames have the labels of

(/b/, /iy/, /iy/,/iy/), then the phone boundaries are defined as

(RB, LB, NB, NB).

Among the choices of input features for boundary de-

tectors, the simplest choice is acoustic features, eg. Mel

Frequency Cepstral Coefficients (MFCC) or Perceptual Lin-

ear Prediction (PLP) coefficients, which are widely used in

ASR systems. 12th order PLP coefficients and the corre-

sponding derivatives were used as a baseline system.

A second choice would be to utilize the tandemmethod-

ology [4]: a phone classifier could be trained on the TIMIT

training set to predict the phonetic class for every frame.

The Multi-layer Perceptron (MLP) trained in this system

outputs a 61-dimensional vector for every frame, corre-

sponding to the posterior probability of each monophone.

Intuitively, a high distance between any pair of adjacent

vectors indicates a phone transition. These vectors could

also be used as acoustic features of the subsequently trained

boundary detector.

For comparison, we also train phonological feature de-

tectors; Table 1 shows the feature attributes used in this

paper, based on articulatory phonology. Given this fea-

ture set, each phone can be uniquely defined using eight

values, each from every phonetic class. The phone la-

bels of TIMIT were converted into phonetic feature la-

bels; eight feature-extraction MLPs were then trained, one

for each phonetic class. The classification results of all

trained feature-extractionMLPs were concatenated together

to form a 43-dimension phonological feature vector per

frame. Similar to the phone-vector situation, one can com-

par

into

tect

com

was

betw

trai

for

2.2.

All

bou

Net

full

sen

The

The

tion

tion

dete

titio

wer

the

man

resu

2.3.

Rat

the

or E

atin

the

dec

com

tran

2

betw

but s

num

1568
e distances between adjacent vectors, or feed the vectors

boundary detector MLPs.

As is noted above, the last component in a boundary de-

ion system is a scheme to detect salient transactions. We

pared two methods for estimating boundaries. The first

a simple metric-based method: the Euclidean distance

een adjacent frames.2 A second option was to directly
n a pair of MLPs on the binary boundary decision, one

the onset and one for the offset of a phone.

Experimental setup

MLPs, including feature-extraction MLPs and phone-

ndary-detector MLPs, were trained using ICSI Quick-

MLP software. Each neural network was a three-layer

y-connectedMLP. The number of hidden units was cho-

according to the number of input units and output units.

whole TIMIT dataset was divided into three partitions.

feature-extraction MLPs were trained on the first parti-

. Then the trained MLPs are applied to the second parti-

to generate phonological features; the phone-boundary-

ctor MLPs were trained on these features. The last par-

n was used for test. The 61 phones defined in TIMIT

e collapsed to 48 phones for training and testing. Since

cross of experimental conditions would generate too

y results for presentation here, we only show selected

lts that demonstrate the detection trends.

Results

her than making a hard decision for each frame, we vary

threshold for detecting boundaries using either the MLP

uclidean distance method and report the receiver oper-

g characteristic (ROC) curves in Figure 1. Because of

vagaries of our windowing scheme and the subjective

isions of the hand-labeled phonetic transcriptions, when

paring the detected results with hand-labeled phonetic

scriptions, a 10ms tolerance window was used.

We had originally considered using the Kullback-Leibler divergence

een vectors since they represent (groups of) probability distributions,

ometimes the probability of some phones/features was zero, causing

erical problems with the KL divergence.
Attribute Values

Sonority Vowel, Obstruent, Sonorant, Syllabic, Silence

Voicing Voiced, Voiceless, N/A

Manner Fricative, Stop, Flap, Nasal, Approximant, Nasal Flap, N/A

Place Labial, Dental, Alveolar,Palatal, Velar, Glottal, Lateral, Rhotic

Height High, Mid, Low, Lowhigh, Midhigh,N/A

Frontness Front, Back, Central, Backfront,N/A

Roundness Round, Non-round, RoundNonround, NonRoundRound

Tense Tense, Lax, N/A

Table 1: Phonetic attribute classes and their values
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Figure 1: ROC curves of the phone boundary detectors

51 2 3 4

Figure 2: Topology of the 5-state phone model. Small cir-

cles indicate non-emitting start/final states.

Three interesting conjectures can be drawn from Fig-

ure 1. First, the nonlinear representations learned by the

MLP are better for boundary detection than Euclidean-

distance metric – phonological features perform better un-

der the MLP regime. Second, using phonological features

as an input representation is modestly better than the phone

posterior estimates themselves. This is likely because of

the redundancy in the estimates along different phonologi-

cal feature dimensions. Finally, phonological feature repre-

sentations also seem to edge out direct acoustic representa-

tions (PLP).

3. Integrating boundary information into
HMMs

If we are to add boundary detection as additional input to

the MFCCs in a speech recognizer, the means of the compo-

nents should be affected by the boundary detection, assum-

ing accurate detection. However, since phone boundaries,

as defined in the training of the MLP phone boundary de-

tector, are single-state phenomena, it seems a bit unreason-

able to expect a traditional 3-state model to shift its compo-

nent means significantly. Thus, we introduced a five-state

HMM phone model (Figure 2), where the two additional

states can catch the phone-boundary transition information,

while the 3 self-looped states in the center can model the
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ne-internal steady regions. The arcs from START to the

nd state and the arc from the fourth to END are included

scape paths for short phones.

Experimental setup

1. Data preparation

TIMIT dataset was used in this experiment; 39 MFCC

fficients were calculated for each utterance, and binary

ne boundaries were extracted by two MLPs, one for

left boundaries and one for the right boundaries, which

us four additional values of boundary information per

e (left boundary, non left boundary, right boundary,

right boundary).

As in the phone boundary detectors introduced in the

ious section, the MLPs take 26 PLP coefficients as in-

vectors and output four boundary-information values.

ause of overlap issues with our training sets for bound-

detection and TIMIT features, we were unable to use the

nological features + MLP detector; rather, we used the

nd-best PLP+MLP detector for this experiment. Unlike

dard MLPs that use softmax as the activation function

lied to the output layer, a linear activation function was

lied to the output layer of these MLPs.

Our baseline (system 0) used the standard 39 MFCCs.

first comparison system (1) used 39 MFCCs plus four

ne boundary features, which were decorrelated using

hunen-Loève transformation (KLT). The decorrelation

es it difficult to visualize the effects of the boundary

ction on the means, so we also implemented a version

out the KLT (system 2). The MFCCs (particularly the

city and acceleration coefficients) may also be corre-

d with the binary features, so in system 3 we performed

LT on the MFCCs and Binary Boundary features jointly.

rder to ensure that the KLT was not affecting MFCCs in

em 3, we also employed KLT directly on MFCCs (sys-

4).

2. HMM training

HMM training was conducted with the HTK toolkit.

d-state triphone HMMs were trained on a set of 3696

rances. A conventional 3-state tied-mixture triphone

M model was constructed as baseline. The final HMMs

four-Gaussian mixtures.

All four data sets were trained using the same conven-

al 3-state HMM model. A similar procedures were im-

ented to train the proposed 5-state model. However, the

itional states caused training failure due to data sparsity

n reaching the 4-mixture stage. Thus, we adopted a hy-

2/4 mixture strategy, promoting triphones to 4 mixtures

n they had sufficient data to support this.

Similar to the paradigm in [3], the training regime

ped the 61 TIMIT phone set to 48; recognition results



3-state 5-state

Inputs ph. accuracy ph. accuracy

0)MFCC 62.37% 63.41%

1)MFCC+KLT(BinBds) 62.47 63.78

2)MFCC+BinBds 61.25 62.79

3)KLT(MFCC+BinBds) 63.20 64.38

4)KLT(MFCC) 62.70 -

Table 2: TIMIT Phone recognition accuracy

were mapped to the 39-phone set used in [8]. A word-graph

grammar was used to enforce triphone constraints.

3.2. Results

Viterbi decoding was used to recognize a test set of 1344 ut-

terances. The baseline system, 39 MFCCs trained on 3-state

model achieved accuracy rate of 62.37%. The phone level

accuracy rates of all five datasets are illustrated in Table 2.

Several observations can be drawn from the results. Af-

ter comparing the two columns, we can claim that the pro-

posed 5-state HMM model did perform better than their 3-

state counterparts on all training datasets. This is encour-

aging given that our training of the 5-state model is likely

suboptimal because of the hybrid mixture strategy. System

2 allows for interpretation of the state means, and visual

inspection of mean of the first binary feature component

(not left boundary) shows highly negative activation for the

state 1 (average: -3.88) compared to states 2 (-2.70) and 3 (-

2.33) – evidence that the binary boundary features do often

provide accurate information.

For comparison, several experiments were also con-

ducted on a 5-state HMMwith a traditional, left-to-right all-

self-loops transition matrix. This model achieved accuravy

rate of 64.78% on system 1. However, this improvement

comes at the cost of vastly increased deletions, showing a

bias against short duration phones, whereas the proposed

model is balanced between insertions and deletions.

Binary boundaries require the decorrelation to improve

recognition (cf. systems 0 and 1 to 2); furthermore, includ-

ing MFCCs in the decorrelation improves recognition fur-

ther. The latter system is significantly better for both 3-state

and 5-states at p<0.05. Comparing the 3-phone system re-

sults for systems 0 and 4, it seems that some, but not a lot,

of the gain is due to decorrelating the MFCCs.

Overall, the combined strategy of binary boundary fea-

tures, KLT, and 5-state representations gives almost a 2%

absolute improvement in phone recognition. This is rather

encouraging since the boundary information we provide is

one of the simplest representations; in future work we hope

to integrate more refined, multi-class versions of boundary

detection, as well as our phonological feature detectors.
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4. Conclusion

work presented here continues the line of argument that

netic transitions are very important for automatic speech

gnition; we have begun exploring the potential space

epresentations of boundaries. The phone boundary de-

ion experiment shows that phonological features outper-

PLP coefficients and phone posteriors as input for de-

ors. By allowing HMMs to attend to boundaries via the

ate model, we can also improve recognition when ex-

it boundary estimates are both present and absent.
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