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Abstract
We describe the development of a speech activity detection system
using an HMM-based segmenter for automatic speech recognition
on individual headset microphones in multispeaker meetings. We
look at cross-channel features (energy and correlation based) to
incorporate into the segmenter for the purpose of addressing er-
rors related to cross-channel phenomena such as crosstalk. Re-
sults demonstrate that these features provide a marked improve-
ment (18% relative) over a baseline system using single-channel
features as well as an improvement (8% relative) over our previous
solution of separate speech activity detection and cross-channel
analysis. In addition, the simple cross-channel energy features are
shown to be more robust—and consequently better performing—
than the more common correlation-based features.
Index Terms: speech activity detection, multi-channel audio,
crosstalk.

1. Introduction
The segmentation of an audio signal into regions of speech and
nonspeech is a critical first step in the task of automatic speech
recognition (ASR). This is especially the case within the con-
text of multispeaker meetings with individual headset microphones
(IHMs). In such meetings, the microphone channels often contain
significant amounts of crosstalk—speech from speakers other than
the wearer of the headset—which typically generates insertion er-
rors if processed by the recognizer. In addition, breath or other
contact noise can be present, particularly for inexperienced head-
set wearers with poor microphone technique, and produces similar
results. Lapel microphones capture less extraneous mouth noise,
but are even more prone to pick up crosstalk speech.

These phenomena present a significant challenge because they
cannot be addressed using the energy-based methods developed
from single-channel speech activity detection (SAD) systems. In
such systems speech/nonspeech (S/NS) decisions are typically per-
formed according to one or more (possibly adaptive) thresholds (as
in [1], for example). Crosstalk and breath noise, however, often
contain a substantial amount of energy, causing the thresholding
methods to falsely trigger. Recent strong interest in the recogni-
tion and understanding of multispeaker meetings is demonstrated
by initiatives such as the Interactive Multimodal Information Man-
agement (IM2), Augmented Multiparty Interaction (AMI), and the
NIST Rich Transcription (RT) meeting recognition evaluations.
Recent results in the NIST RT evaluations [2] show that errors in
speech activity detection are one of the major sources of error in
recognition from IHM recordings, providing us with the motiva-
tion for the work reported here.
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This research was thus not directed at SAD per se, but at im-
ing the ICSI-SRI meeting recognition system, with results
sured in terms of word error rate (WER). Our previous ap-
ch to SAD for IHM recognition was to perform a time-based

rsection of the output from two distinct segmenters:

A segmenter based on hidden Markov models (HMMs)
similar to that described in [3], but simpler in structure and
utilizing standard cepstral features

A local-energy detector that generates segments by zero-
thresholding a “crosstalk-compensated” energy-like signal
derived from the energy signals of all channels

The effectiveness of the approach lay in that the intersection
edure allowed the main weakness of each segmenter to largely
el out that of the other: the false alarms arising from crosstalk
e HMM-based segmenter and those arising from breath noise
e local energy detector. Details of the system can be found in

Though relatively well performing, having the cross-channel
ysis be disjoint from the speech activity modeling was be-
ed to be a suboptimal approach. This paper details the develop-
t of a modified system that addresses this issue by combining
two sources of information through the incorporation of cross-
nel features in the HMM-based segmenter.
The remainder of the paper is organized as follows. Section
tails the HMM-based segmenter, and the ASR system with

ch we measured segmentation performance is briefly described
ction 3. The cross-channel energy modeling is detailed in Sec-
4. We present development experiments in Section 5, valida-
of the final system in Section 6, and discussion proceeds in

tion 7. Conclusions are given in Section 8.

2. HMM-based S/NS Segmenter
HMM architecture

S/NS segmenter is derived from an HMM-based speech recog-
n system. The system was modified and simplified to con-
of only two classes – “speech” (S) and “nonspeech”’ (NS) –
being represented with a three-state phone model. State emis-
probabilities are modeled using a multivariate Gaussian Mix-
Model with 256 components and diagonal covariance matri-
Segmentation is carried out by decoding the full IHM channel
eform. The decoding is potentially performed multiple times,
decreasing transition penalty between the two classes, so as

enerate segments that do not exceed 60 seconds in length.
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2.2. Baseline features

The features used in the baseline system consist of 12th-order Mel-
frequency cepstral coefficients (MFCCs), log-energy, along with
their first and second differences. The features are computed over a
window of 25ms advanced by 20ms and cepstral mean subtraction
(CMS) is performed as a waveform-level normalization. Features
such as these are common to many speech recognition systems and
therefore provide an advantage over those used in [3]. In addition,
the cepstral features, being largely independent of energy, provide
information unavailable to energy-based systems, which could aid
in distinguishing between local speech and other phenomena with
similar energy levels (such as breaths and coughs).

2.3. Segmenter post-processing

To mitigate the effect of “clipped” segments (i.e., segments that cut
off initial or final speech) that may be generated by the segmenter,
a post-processing step is performed that pads the segment on both
ends by a fixed amount (40ms). Similarly, a post-processing step
that merges adjacent segments that have small separation (less than
0.4s) is also performed to “smooth” the segmentation. Segments
are merged to a maximum of 60s. These time constraints had
been optimized for best recognizer accuracy and a good tradeoff
with recognizer runtime (long segments tend to use more decod-
ing time), using our baseline segmentation models. They have not
(yet) been reoptimized for the improved segmenter features pre-
sented here.

3. ASR System
For ASR we used the meeting recognition system fielded by ICSI-
SRI in the NIST Spring 2005 Meeting Recognition evaluation (RT-
05S), as described in detail in [2]. The recognizer uses multiple
decoding passes and front ends for cross-adaptation between sub-
systems and successive refinement of hypotheses. It uses percep-
tual linear prediction (PLP) and MFCC acoustic features, the latter
augmented with discriminative phone-posterior features estimated
by multilayer perceptrons. Features are transformed with vocal
tract length normalization and heteroscedastic linear discriminant
analysis, as well as feature-level constrained maximum likelihood
linear regression (CMLLR). Acoustic models are trained on about
2000 hours of telephone speech data, followed by maximum a pos-
teriori (MAP) adaptation to about 100 hours of meeting data. The
language model is a 4-gram estimated from a mix of telephone
conversations, meeting transcripts, broadcast, and Web data. The
system has two versions: one using two decoding passes for quick
turnaround (the “fast” system), and one using an additional six de-
coding passes for best results (the “full” system).

4. Cross-Channel Modeling
For a given speaker and corresponding channel in the IHM condi-
tion, the primary complicating factor for speech activity detection
is the presence of other speakers. Approaches that use information
from the other channels (and thus about the speech activity of the
other speakers) are best suited for this condition. Such a cross-
channel approach was incorporated into the previous SAD system,
as mentioned in Section 1, but in a way that kept it separate from
the speech activity modeling. An alternative method explored here
is the use of cross-channel features that are appended to the base-
line feature vector. In this way cross-channel phenomena such as
crosstalk can be better modeled, improving local speech activity
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eling and detection. The features examined are given below.

g-energy differences (LEDs) The log-energy difference rep-
resents the log of the ratio of short-time energy between
two channels, and is computed between a given target IHM
channel and each of the non-target channels. As with the
baseline features, the short-time energy is computed over a
window of 25ms with an advance of 20ms. This is a vari-
ation of the feature described in [4] with the simplifying
removal of the sigmoid, because the raw values were con-
sidered more informative.

rmalized log-energy differences (NLEDs) In some cases dif-
ferencing of the raw log-energy values may be suboptimal
because of significant differences in microphone gains. To
compensate for this, the normalization scheme described
in [3] was adopted as a step prior to the energy differenc-
ing. This normalization consists of subtracting the min-
imum frame log-energy of a channel from all log-energy
values in the channel. That is, for a channel at frame

(1)

where represents log-energy. This minimum frame log-
energy serves as a noise floor estimate for the channel
and has the advantage of being largely independent of the
amount of speech activity in the channel.

rmalized maximum cross-correlation (NMXC) A more
common cross-channel feature found in the literature [5, 6]
is one based on short-time cross-correlation maxima be-
tween channels. The correlation between the channels
serves as an indicator of crosstalk. We define the normal-
ized maximum cross-correlation between a target channel
and nontarget channel to be

(2)

where represents the cross-correlation at lag and
is the nontarget channel autocorrelation for lag 0

(i.e., its short-time energy). Cross-correlation and auto-
correlation values are computed over a context window of
25ms using a Hamming window function with an advance
of 20ms.

A key consideration in using cross-channel features is the po-
ially variable number of channels to be processed versus the
irement of a fixed feature vector size for the HMM-based
enter. The solution adopted for this work was to use or-

statistics—specifically maximum and minimum—of the fea-
values generated on the different channels, as was done by

gley et al. in [5].

5. Development Experiments
development test sets were chosen for initial experiments to

uate the performance of the cross-channel features described
e, and to determine which methods to include in the final SAD

em.

Results on AMI development set

AMI development set consists of meetings contributed by the
I program for the NIST RT-05S meeting recognition evalua-
. These are scenario-based meetings, elicited as described in



[7], each involving four participants wearing headset microphones
or head-mounted lapel microphones.

Because the meetings all contain the same number of chan-
nels, it is possible to create a feature vector of fixed length using
values from all channels, rather than by using the maximum and
minimum values only. This experiment was performed to deter-
mine the effect of the length standardization procedure.

For training of the HMM-based segmenter, the first 10 minutes
from 35 of these meetings were utilized. Testing was performed
on 12-minute excerpts from four additional meetings.

Table 1: Performance comparisons for systems using AMI devel-
opment data. Results obtained using “fast” ASR system.

System Del Subs Ins WER

baseline 17.4 13.0 7.4 37.8
base + LEDs (all) 17.2 13.0 4.5 34.8
base + LEDs (max & min) 17.4 12.8 4.5 34.7
base + NLEDs (max & min) 17.1 12.0 4.4 33.5
base + NMXC (all) 17.2 12.8 4.3 34.3
base + NMXC (max & min) 17.4 12.1 4.5 34.1
reference 18.3 10.2 3.4 32.0

The results for the various systems are given in Table 1. “Ref-
erence” refers to a segmentation derived from the time marks in
the reference for word error scoring. As these were preliminary
experiments, the fast version of the ASR system was used. From
these results we see that the systems with cross-channel features all
represent a significant performance improvement from the base-
line, and that this is largely due to the reduction of insertion errors.
This suggests that these cross-channel features are indeed useful
in distinguishing crosstalk from local speech, as crosstalk is a key
source of insertion errors for the IHM condition.

Also of note is that using max and min feature values yields
performance similar to using all cross-channel values. The tenta-
tive conclusion is that max and min are good representative val-
ues for the purposes of SAD, although one additional value was
omitted. It should also help that the min and max features impose
a consistent rank ordering on the available cross-channel values.
Unfortunately, no substantial data sets are available to test these
effects on a much larger number of channels.

A third observation is that the energy normalization technique
produces about a 1% absolute improvement over the unnormalized
case, thus establishing its effectiveness. In addition, these normal-
ized log-energy difference features appear to be slightly better than
the commonly used cross-correlation based features for this data
set.

5.2. Results on RT-04S evaluation set

Having established the effectiveness of the features, we subse-
quently evaluated the cross-channel feature systems on the RT-04S
evaluation set, this time using the full ASR system. This test set
consists of 11-minute excerpts of meetings provided from each of
the sources CMU, LDC, ICSI, and NIST. Each site contributed two
meetings for a total of eight meetings. The meetings vary in style,
number of participants, and room acoustics, potentially presenting
a greater challenge than the AMI set. For this set the segmenter
was trained using the first 10 minutes from each of 15 NIST meet-
ings and 73 ICSI meetings.

Table 2 gives results on the RT-04S test set for the baseline
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M segmenter, the old intersection segmentation system used in
and briefly described in Section 1 (denoted by ‘intersection’),
ous cross-channel feature systems, and the reference segmen-
n. Also note that the cross-channel features use only max and
values because of the variable number of speakers.

le 2: Performance comparisons for systems using RT-04S eval-
on data. Results obtained using “full” ASR system.

WERSystem
ALL CMU ICSI NIST LDC

baseline 29.6 33.1 23.4 20.0 38.7
intersection 27.9 32.5 21.4 20.2 34.9
base + LEDs 27.3 32.8 20.1 20.0 33.7
base + NLEDs 26.9 32.8 18.5 19.6 34.0
base + NMXC 28.1 31.7 24.9 19.0 33.8
reference 25.1 30.3 18.0 17.0 31.9

As with the AMI development set, these results reveal im-
ed performance over the baseline system for the cross-channel

ure systems, further confirming the effectiveness of these fea-
s. The cross-channel feature systems also represent an im-
ement over the intersection system, supporting the initial hy-
esis that the disjoint cross-channel analysis and speech activity
eling was a suboptimal approach.
A comparison of the normalized cross-correlation and the nor-
ized log-energy difference features produces somewhat differ-
observations for this data set. For two of the four sources
U and NIST), the NMXC features produce substantially lower

d error rates than the NLED ones. For the ICSI meetings,
ever, the WER with NMXC is much higher—about 30% rel-
e. Further investigation reveals that the contributing factor for
higher WER is almost exclusively insertion errors (0.9 for the
D features and 9.1 for the NMXC features), which suggests a

rer handling of crosstalk. This leads to a poorer overall perfor-
ce for the NMXC features system (28.1% versus 26.9%) and
cates that the NLED features tend to be more robust than the
XC ones. As a result, the NMXC features were removed from
sideration for the final SAD system.

6. Final System Validation
NIST RT-05S meeting recognition evaluation was selected as

st set for performing validation on the finalized system—the
M-based segmenter with the baseline and NLED features. The
data is composed of 12-minute excerpts from 10 meetings. The
tings were contributed by five sites with two meetings per site:
I, CMU, ICSI, NIST, and Virginia Tech (VT). Being drawn

a pool similar to the RT-04S data, these meetings also pos-
significant variation in style, number of participants, and room
stics.
The segmenter was trained using the union of the AMI, ICSI,
NIST training meetings described earlier (see Section 5.1 and
. We explored two options to train the segmenter: either to pool
raining data to train a single model, or to train an AMI-only
S model for use on AMI test data, and a separate ICSI+NIST
el for use on all other test meetings. Using results on separate
lopment data to make the decision, we chose the two-model

roach for the baseline and intersection methods, and the single-
led-model approach for the new cross-channel features.



Table 3: Performance comparisons for systems using RT-05S eval-
uation data. Results obtained using “full” ASR system.

WERSystem
ALL AMI CMU ICSI NIST VT

baseline 29.3 22.1 23.3 20.5 45.8 35.8
intersection 25.9 23.3 23.3 24.5 34.5 23.6
base + LEDs 25.6 22.0 23.5 20.9 37.3 23.8

+ SDM 24.7 33.0
base + NLEDs 23.9 21.9 23.1 20.6 30.9 22.9

+ SDM 22.7 25.2
reference 19.5 19.2 19.9 16.8 21.4 20.6

Table 3 presents recognition performance results for the seg-
mentation from the two log-energy difference systems (i.e., unnor-
malized and normalized) along with the key contrastive ones: the
baseline segmenter, the old intersection system, and the reference
segmentation. With regard to performance of the cross-channel
features, the same trend can be seen as in the development experi-
ments. The cross-channel system with NLEDs gives about an 18%
relative WER reduction over the baseline and about an 8% relative
reduction over the intersection approach.

One of the NIST meetings in this test set presented an unusual
setup. The meeting had a speaker participating via a speakerphone,
and, consequently, without corresponding IHM channel. In addi-
tion, two of the participants were silent during the entire meeting.
This led to an inordinate amount of insertion errors triggered by
crosstalk, as reflected in the very high baseline error rate in the
NIST column. To better cope with unmiked speakers we experi-
mented with a variant of our algorithm that included a single, cen-
trally located, omnidirectional distant microphone (SDM) channel
in the cross-channel feature computation. The intent was for this
SDM to serve as a stand-in for any speakers without IHM.1 The
corresponding results are given in the table in the rows marked “+
SDM”. As can be seen, the SDM approach worked very well for
dealing with the particular situation of the NIST meeting, espe-
cially when coupled with the NLED features. The difference be-
tween that system and the reference channel on the NIST meetings
was now comparable to that for the other meeting sources.

7. Discussion
The initial motivation for this work was the improvement of the
ICSI-SRI ASR system for the IHM condition of the NIST meet-
ing recognition evaluation, specifically the speech activity detec-
tion. The results presented here demonstrate that, to this end, we
made substantial progress. Significant WER reductions (of up to
18% relative) were achieved using the log-energy difference fea-
tures we have described. In the process, the technique of cross-
channel modeling using these features was validated. Particularly
notable is the extent to which performance gains can be made us-
ing such relatively simple features. Along these lines, the robust-
ness of these features (as compared to the cross-correlation-based
features) is also of note.

Last, there still exists a performance gap of about 2-3% abso-
lute between our best automatic system and the reference segmen-
tation. This suggests the possibility of further improvements. One

1Recall again that in the IHM condition, the recognizer is not supposed
to recognize speech spoken by speaker without personal microphones.
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to achieve such improvements might be the inclusion of other
s-channel, as well as single-channel features (e.g., as in [5]).

8. Conclusions
have detailed the development of a speech activity detection
em using an HMM-based segmenter with single-channel (cep-
, log-energy, and derivatives) and cross-channel (log-energy
rences) features. Results show that the inclusion of these sim-

cross-channel features yields large reductions in ASR word er-
rate performance over both the case of no cross-channel anal-
and that of cross-channel analysis independent of speech ac-

y modeling. In addition, the benefit of the simple normaliz-
technique of minimum energy subtraction was demonstrated.
lly, the log-energy difference features were shown to exhibit
ter robustness than the more prevalent cross-correlation-based
ures. The inclusion of a distant omnidirectional microphone
e cross-channel feature computation allows the suppression of
stalk even from speakers without dedicated microphones.
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