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ABSTRACT 

Robustness against transmission errors is one of the primary 
barriers to the widespread application of automatic speech 
recognition (ASR) in mobile communications. We have 
previously proposed a subvector based error concealment (EC) 
method that conducts error detection and mitigation in the 
feature-domain at the subvector level. This paper presents a 
weighted Viterbi decoding (WVD) algorithm that works in the 
model domain for counteracting unreliable features generated 
by the subvector based EC. The reliability of each feature is 
estimated during the process of subvector based EC and is used 
by the WVD for modifying the observation probability of the 
feature. Recognition experiments are conducted on the Aurora 
2 database corrupted by GSM error pattern EP3. Combining 
the WVD and the subvector EC achieves 70% and 24% 
performance improvement as compared to the ETSI-DSR 
standard and the subvector based EC, respectively.  
Index Terms: distributed speech recognition, error 
concealment, split vector quantization, weighted Viterbi  

1. INTRODUCTION 

With the increasing number of mobile devices and the 
development of ubiquitous networking, distributed speech 
recognition (DSR) is advantageous in terms of low 
computational requirements and power consumption for 
devices at the client side and effortless update of the core part 
of the recogniser at the server side. Nevertheless, error-prone 
channels in mobile communications are the key problem in 
making DSR applications robust [1], [2] and severe 
degradations in recognition performance have been 
demonstrated for such channels (e.g. reported in [3] for GSM 
error pattern EP3).   

Approaches to handle this problem consist of client-based 
error recovery, and server-based EC which is further classified 
into feature-reconstruction and ASR-decoder EC methods. 
Client-based error recovery requires the client to exploit the 
characteristics of channels and signals. The deployment of 
client-based techniques is always a trade-off between the 
achieved performance and the required resources. One 
disadvantage of client-based techniques is their weak 
compatibility due to the required modifications in the client. In 
contrast, server-based EC methods do not require 
modifications at the DSR client-side, thus guaranteeing 
compatibility with the existing ETSI-DSR standards. This 
paper focuses on server-based EC methods only. 

Conventional server-based feature reconstruction methods 
such as repetition [4] and interpolation [5] disregard erroneous 
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ature vectors and reconstruct them on the basis of received 
ror-free vectors. As opposed to this, the recently proposed 
bvector EC [6] has shown substantially improved 
rformance by conducting EC at the subvector level. It is 
wever observed that the features reconstructed are 
tentially unreliable since the error detection at the subvector 

vel uses a threshold based data consistency test rather than 
e more reliable cyclic redundancy check (CRC).  On the 
her hand the data consistency test by nature generates a 
liability measure for each subvector which can then be 
ploited by weighted Viterbi decoding [7] in the model 
main.  

WVD generally introduces exponential weighting factors 
to the calculation of the observation probability to decrease 
 neutralise contributions made by features or feature vectors 
ith low reliability. Weighting factors may be computed 
ther from the bit reliability information given by the network 
annel decoder that applies a soft-decision or by using an 
timated value for a hard-decision channel decoder [8], [9]. 
he first method requires a known bit probability which is 
ten not the case [10] whereas the second method removes 
e requirement of a known bit probability and is applicable to 
wider range of channels. The WVD method introduced in 
is paper falls in the second category and is implemented as a 
llow-up to the subvector based EC.  

2. SUBVECTOR BASED EC 

istinct from conventional vector level EC algorithms, the 
bvector based EC consider each subvector in a feature 
ctor as a supplementary basis for error detection and 
itigation. This is realised by exploiting the temporal 
rrelation present in the speech features to identify 
consistent subvectors within erroneous vectors and replacing 
ch inconsistent subvector with its nearest neighbouring 
nsistent subvector.  

Let us first introduce the ETSI-DSR standard [4]. In the 
andard, the front-end produces a 14-element vector 
nsisting of log energy )(log E   and 13 mel-frequency 
pstral coefficients (MFCC) ranging from 120 to cc . Each 
ature vector is compressed using split vector quantization 
VQ). The SVQ algorithm groups two features 

})logand{or}11...,,3,1,and{either 01 Ecicc ii  into a 
ature-pair subvector resulting in seven subvectors in one 
ctor. Each subvector is quantized using its own SVQ 
debook. Two quantized vectors are grouped together and 
otected by a CRC creating a frame-pair. Frame-pairs are 
rther concatenated to form a bit-stream for transmission. At 
e server side two calculations determine whether or not a 
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frame-pair is received with errors, namely a CRC test and a 
data consistency test. In the EC processing, a vector repetition 
scheme is applied to replace erroneous vectors. 

Let us then introduce the subvector based EC. Given that t
denotes the frame number and V the feature vector, the vector 
is formatted as  

Ttttttt Ecccc ]log,,...,[ 01221V

      Ttttttt Eccccc ]]log,[],,]...[,[[ 0121121

      TTtTtTt ]]S...[]S[,]S[[ 610                                               (1) 

where t
jS  (j=0,1…6) denotes the j’th subvector in frame t.

Two consecutive frames in a frame-pair are represented by 
[ 1, tt VV ]. The consistency test is conducted within the frame-

pair such that each subvector t
jS  from tV is compared with 

its corresponding subvector 1t
jS  from 1tV  to evaluate if 

any of the two subvectors is likely to be erroneous. If any of 
the two decoded features in a feature-pair subvector does not 
possess a minimal continuity, the subvector is classified as 
inconsistent. Specifically subvectors t

jS and 1t
jS  in a 

frame-pair are classified as inconsistent if 

))1())1()1(((OR))0())0()0((( 11
j

t
j

t
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t
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t
j TSSdTSSd      (2)  

where ||),( yxyxd  and )0(t
jS  and )0(1t

jS  and )1(t
jS

and )1(1t
jS  are the first and second element, respectively, in 

the feature-pair subvectors t
jS  and 1t

jS  as given in Eq. (1); 

otherwise, they are consistent. Thresholds  Tj )0(  and )1(j T
are constants based on measuring the statistics of error-free 
speech features.  

Assume there are 2N frames (N frame-pairs) in error to be 
mitigated. Using the notation A for the last error-free frame 
and B for the following error-free frame, the ETSI-DSR 
standard buffered vectors are 
[ BNANAAAA VVVVVV ,,...,, 21221 ], as illustrated in Fig. 1 
at the subvector level. 
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Figure 1: ETSI-DSR buffering matrix. 

In the buffering matrix columns AV  and BV  are the 
error-free vectors with 2N erroneous vectors received in 
between. The 2N vectors NAA ... 21 VV  are all identified as 
erroneous by the frame error detection methods. In the 
subvector based EC, these erroneous vectors are now further 
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bmitted to a subvector consistency test which generates a 
nsistency matrix C of dimensions )22(7 N  defined as 
llows:     

)2(fromconsistentSand1221
)2(fromntinconsisteSand1220

2211

1
1

1
1
jA

i

jA
iij

Nj,
Nj,

Njorj,
    (3) 

On the basis of this consistency matrix, the EC is 
plemented in such a way that all inconsistent subvectors are 

placed by their nearest neighbouring - in time - consistent 
bvectors whereas the consistent subvectors are kept 
changed. 

3. WVD BASED ON SUBVECTOR EC  

ubvector EC handles subvectors within erroneous vectors in 
o different ways. The first retains all consistent subvectors, 
d the second substitutes inconsistent subvectors with their 
arest neighbouring consistent subvectors. This strategy 
neficially exploits the remaining error-free information 
bedded in each erroneous vector, but it is noted that neither 

e retained consistent subvectors are necessarily correct (or 
liable) nor the nearest neighbouring substitution generates 
e same features as their original. Therefore, these potentially 
reliable features should not be given the same weight as 
ror-free (reliable) features in the ASR decoder. This is 
alised by using WVD. 

.1 Weighted Viterbi Decoding  

ector based WVD modifies the observation probability of 
ch feature vector in the Viterbi decoding by using the 
liability of each vector as an exponential weighting factor 
4]. The WVD uses the following formula to update the 

kelihood score accordingly 

   
)(

1 )()()(
tt

jijtit baiMaxj V                                     (4)  

here )( jt  is the likelihood of the most likely state 
quence at time t that ends in state j and has generated the 
servation (feature vectors) from 1V  to tV , ija  is the 

ansition probability from state i to state j, )( t
jb V  is the 

obability of emitting observation tV  when state j is entered. 
he weighting factor )(t  is a normalised reliability 
efficient – of value between 0 and 1 – that adjusts the 
ntribution of each vector to the overall likelihood score. 

hoosing the value of )(t  close to one causes the output 
obability for the particular vector to contribute almost fully 
 the likelihood score. In contrast, choosing a value of )(t
ose to zero causes the output probability to be equal to one 
d identically contribute to all models, and therefore 
utralises the vector contribution. A vector based WVD is 
plied in [11] where a time varying weighting factor is used 
 handle the fact that the longer a burst is the less effective is 
e vector repetition technique. 

In combining WVD with the subvector EC, each feature is 
ven its own weighting factor. Consider an observation vector 



Tttt Kvvv )](...,),2(),1([tV  where the component )(kvt  is 

either one of the MFCC coefficients 12...,,2,1, kct
k  or 

tElog for k=13. In this work 0c  is not used for recognition. 

The mapping between )(kvt  and t
jS  is defined by Eq. (1).  

For example, )0()1( 01
ttt Scv  and )1()2( 02

ttt Scv . In 
assuming a diagonal covariance matrix, the overall 
observation probability is the product of the probabilities of 
emitting each individual feature. A feature based WVD thus 
computes the likelihood score as follows: 

K

k

tt
jijtit

kkvbaiMaxj
1

)(
1 ))(()()(                            (5)  

where ))(( kvb t
j  is the observation probability of observing 

feature )(kvt  when entering state j, and )(tk  is the  

reliability measure for feature )(kvt as given in the next 
subsection. 

3.2 Reliability measure 

The reliability of each feature )(kvt  is calculated during the 
subvector EC processing. When the two corresponding 
subvectors t

jS  and 1t
jS  in a frame-pair pass the consistency 

test as given in Eq. (2) the reliability of each feature in the 
subvectors is calculated on the basis of the difference 

))(),(( 1 kvkvd tt  between two corresponding features; 
otherwise, the reliability is dependent on both the reliability of 
the substituting features and the temporal distance between the 
substituted features and the substituting features. Specifically, 
the weightings are assigned according to the following 
formula: 

)(bydsubstitute)(,)(
(2)fromconsistent,)(

||

/))(),(( 1

kvkvpt
St

pttp
k

t
j

Tkvkvd

k
k

tt

    (6) 

where and  are two constant parameters, p is the 
temporal distance between the two features, and Tk is the 
threshold for subvector consistency test as used in Eq. (2). For 
error-free vectors the weighting factors are equal to 1.  

4. EXPERIMENTS 

The combination of the feature based WVD and the subvector 
EC is evaluated on the basis of the Aurora 2 Test Set A 
database [12]. The database is the TI digit database artificially 
distorted by adding noise and using a simulated channel 
distortion. Whole-word models are created for all digits with 
the HTK recogniser [13]. Each of the digit models has 16 
hidden Markov model (HMM) states with three Gaussian 
mixtures per state. The silence model has only three states 
with six HMM Gaussian mixtures per state. The one-state 
short pause model is tied to the second state of the silence 
model. Training on clean speech is used in the experiments. 
The test data are the clean data from Test Set A. 

The characteristics of the transmission channel are given 
by the widely used GSM error pattern EP3 [1], [2]. GSM error 
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tterns are commonly used for testing speech codecs and 
SR error protection schemes due to the realistic error 
stributions including both random errors and burst-like 
rors. Table 1 shows the WER performance for three EC 
ethods - consisting of the repetition (ETSI-DSR baseline) 
], the vector based WVD [11], and the subvector based EC 
EC) [6] – as compared to error-free transmission.  

able 1: %WER for the GSM EP3 for Aurora 2 Test Set A 

Method ETSI-DSR WVD SEC Error-free 
WER  6.70 4.78 2.65 0.95 

.1 The reliability measure parameters  and 

his subsection investigates the relationship between 
rformance and the parameters  and  used in calculating 
e reliability. Experiments show that 4.0and45.0
ve the highest performance with a WER of approximately 

. This is significantly better than the ETSI-DSR standard 
sult that is 6.7%. The effects on WER of varying the values 
 the two parameters are presented in Table 2 and 3. The 
sults show that a setting of the two parameters  and
ound their optimum values only has a minor influence on the 
sulting WER. 

able 2: %WER across different  settings with a fixed 
4.0  for the GSM EP3 for Aurora 2 Test Set A 

0.35 0.40 0.43 0.45 0.47 0.50 0.55 
WER 2.08 2.07 2.05 2.05 2.06 2.06 2.10 

able 3: %WER across different  settings with a fixed 
45.0  for the GSM EP3 for Aurora 2 Test Set A 

0.30 0.35 0.38 0.40 0.42 0.45 0.50 
WER 2.08 2.08 2.05 2.05 2.07 2.09 2.11 

.2 The consistency test thresholds  

he effect of the settings of the threshold values (i.e. )0(jT

d )1(jT  in Eq. (2) which are the same as Tk in Eq. (6)) on 
rformance is investigated in this subsection. It is noted that 
o sets of thresholds are applied in this work. The first set is 
ed in the vector consistency test as an additional test to the 
RC checking according to the ETSI-DSR standard, and the 
cond set in the subvector consistency test. In the 
periments conducted above, the two sets of thresholds are 
ven the same values as provided by the ETSI-DSR standard.  

In the experiments in this subsection, the first set of 
resholds is kept as given in the ETSI-DSR standard, whereas 
e second set of thresholds is varied across a range. This is 
ne by multiplying the ETSI-DSR standard values with a 
aling factor  as given in Table 4, which shows the WER 
ross the  range. 

able 4: %WER across different threshold settings for the 
SM EP3 for Aurora 2 Test Set A 

-1.0 0.1 0.6 0.8 1.0 1.2 2.0 
WER 4.73 2.85 2.09 2.01 2.05 2.18 2.81 



The results show that for a value 1  the performance 
is still better than the ETSI-DSR standard (6.7%), but close to 
the WER obtained by applying vector based WVD (4.78%) as 
shown in Table 1. The effect of using a negative threshold 
value is that all subvectors are detected as inconsistent and 
replaced by their nearest neighbouring error-free substitutions, 
thus equivalent to the ETSI-DSR vector repetition scheme. 
The performance improvement over the ETSI-DSR is caused 
by the WVD. The lowest WER is achieved for 8.0 . It is 
shown that for 1.0  where only almost identical 
subvectors are classified as consistent, the proposed method 
gives better performance than the vector based WVD. A 
possible explanation for this improvement is that keeping the 
identical features unchanged may be better than using 
substitutions. With a choice of 2  - where only a small 
number of subvectors are detected as inconsistent – an 
improvement as compared to the ETSI-DSR repetition is still 
observed. This may indicate that in the context of ASR, 
information including some errors is better than no 
information.  

The results show that varying the scaling factor  around 
the default setting only has a minor influence on the resulting 
WER.  

4.3 Overall performance comparison 

On the basis of the above experiments on parameters settings, 
the combination of the feature based WVD and subvector EC 
(with a setting of 8.0and4.045.0 ) is compared 
with the ETSI-DSR standard, the vector based WVD, and the 
subvector EC (SEC). The results are shown in Fig. 2.  

WER

0

2

4

6

8

ETSI-DSR WVA SEC SEC-WVA Error-Free

Figure 2: %WER across different methods for the GSM EP3 
for Aurora 2 Test Set A. 

The relative improvement over the ETSI-DSR standard, 
vector based WVD, and SEC are 70.0%, 58.0% and 24.2%, 
respectively.  

5. CONCLUSIONS  

The paper presents a WVD that conducts ASR decoding on 
the basis of the subvector based EC. During the process of 
subvector feature-reconstruction, a reliability measure for each 
feature is calculated and used for the WVD. Encouraging 
recognition performance has been obtained by combining the 
WVD and the subvector based EC. Due to the nature of 
server-based methods, there is no requirement of client-side 
modifications given full compatibility with the current ETSI-
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SR standards. The method does not lead to an increase in 
mputational cost or in bandwidth requirement. 
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