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Abstract

We previously proposed a Mel-Wiener filter to enhance Mel-LPC
spectra in presence of additive noise. The proposed filter was es-
timated based on minimization of sum of square error on the lin-
ear frequency scale and efficiently implemented in the autocorre-
lation domain without denoising input speech. In the previously
proposed system we segregated speech and noise using an energy
based VAD and a very simple flooring technique were used for
noise segment. In this present work, we improve the VAD us-
ing autoregressive (AR) model of noise and flooring technique as
well. In addition, a lag window is applied to the estimated noise
autocorrelation function to smooth the fine spectra of high order
autocorrelation coefficients. As a result, substantial improvement
is obtained over previous result.
Index Terms: Noisy speech recognition, Mel-Wiener filter, Mel-
LPC analysis, Bilinear transformation, Aurora 2 database

1. Introduction
The performance of speech recognition systems has reached to the
satisfactory level under controlled and matched training and recog-
nition conditions. However, performance severely degrades when
there is a mismatch between training and test conditions, caused
for instance by additive noise. So, noise robustness is an important
issue for ASR. There are many techniques to enhance the noisy
speech signal based on the additive property of noise. The widely
used methods to remove additive noise are spectral subtraction
with many variants [1],[2] and Wiener filtering [3],[4].

As to front-end of speech recognition system, spectral analy-
sis with auditory-like frequency resolution has been shown to be
more effective for speech recognition [5],[6]. In filter-bank based
systems, MFCC [5] is widely used. On the other hand, as an
LP-based method, we previously proposed a simple and efficient
time domain technique to estimate an all-pole model on the mel-
frequency scale [7], [8], which is referred to as “Mel-LPC”.

Therefore, speech enhancement in auditory-like frequency do-
main is also advantageous for speech recognition [3]. In the MFCC
based system [3], a two-stage mel-warped Wiener filter was pro-
posed, where the mel-warped transfer function was estimated and
then converted to a time domain impulse response as Inverse Mel-
DCT, which is computationally inefficient. So, this method is not
suitable for Mel-LPC based front-end. From the practical view-
point, it is appropriate to implement the Mel-Wiener filter in the
time domain for Mel-LPC based speech analysis because Mel-
LPC analysis is a time domain method. So, from this demand pre-
viously we proposed Mel-Wiener filter [10] combined with Mel-
LPC for noise robust speech recognition. While a conventional
Wiener filter might be applied to the frequency warped input sig-
nal, we took a novel approach to estimate the Mel-Wiener filter
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d on the error minimization on the linear frequency scale. The
sfer function of the proposed filter is defined by using a first
r all-pass filter instead of unit delay. For a given order of fil-

the Mel-Wiener filter is expected to have a higher resolution in
r frequency region than that on the linear frequency scale.
In the previously proposed Mel-Wiener filter an energy based

was used and a very simple flooring technique was intro-
d for the noise segment. Though the proposed system out-

orms the original two-stage mel-warped Wiener filter [3] for
higher than 0 dB, its overall performance was lower than

of ETSI Advanced Front-End (AFE) for Distributed Speech
ognition (DSR) [11]. So, in order to improve the performance
e previously proposed system, we improve VAD and flooring
nique. In addition, a lag window is applied to the noise au-
rrelation function to smooth the fine spectra of higher order
correlation coefficients. Finally, the same blind equalization
ETSI AFE is applied to the cepstral coefficients to minimize

channel effect. Consequently, remarkable improvement has
achieved and it slightly outperforms the ETSI AFE for DSR

12] as well.
The rest of this paper is organized as follows. In section 2, af-
verview of the Mel-LPC analysis, formulation of Mel-Wiener
r, estimation of crosscorrelation function between clean and
y speech with flooring method are presented. The system
view, particularly, VAD, noise estimation, filtering and blind
lization are described in section 3. In section 4, analysis con-
ns and experimental results are presented. Finally, conclusion
esented in section 5.

2. Mel-Wiener Filter
Overview of Mel-LPC Analysis

intention is to use Mel-LPC analysis as front-end with Wiener
r. The frequency warped signal x̃[n] (n = 0, . . . ,∞) obtained
he bilinear transformation [9] of a finite length windowed sig-
[n] (n = 0, . . . , N − 1) is defined by

X̃(z̃) =
∞X

n=0

x̃[n]z̃−n = X(z) =
N−1X
n=0

x[n]z−n (1)

re z̃−1 is the first order all-pass filter,

z̃−1 =
z−1 − α

1 − α · z−1
(2)

, the all-pole model on warped frequency scale is defined as

H̃a(z̃) =
σ̃e

1 +
Pp

k=1 ãkz̃−k
(3)

re ãk is the k-th mel-prediction coefficient and σ̃2
e is the resid-

nergy [7]. To solve for ãk and σ̃e, the generalized autocorre-
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lation coefficients of the input signal are required instead of auto-
correlation coefficients in the traditional LP analysis [8].

2.2. Wiener Filter Formulation on Warped Frequency Scale

First, this section briefly describes the conventional Wiener filter-
ing on a warped frequency domain, which can be implemented by
applying the traditional Wiener filter to a frequency warped signal.

Now, we define a Wiener filter H̃(z̃) on the warped frequency
scale as

H̃(z̃) =

p−1X
n=0

h̃[n]z̃−n (4)

Then, the estimated clean speech ˆ̃s[n] is given by

ˆ̃s[n] =

p−1X
k=0

h̃[k]x̃[n − k] (5)

Now, since the error signal ẽ[n] = s̃[n] − ˆ̃s[n] is an infinite se-
quence, the sum of the square error is evaluated by

ξ{h̃}=

∞X
n=0

ẽ[n]2 =
1

2π

Z π

−π

˛̨
S̃(ejλ̃)−H̃(ejλ̃)X̃(ejλ̃)

˛̨2
dλ̃ (6)

However, as shown in (1), since the bilinear transformation of a
finite sequence results in an infinite sequence, the direct calcula-
tion of the autocorrelation coefficients of frequency-warped signal
needs to truncate the signal, and thus, is not practical.

2.3. Wiener Filter Formulation on Linear Frequency Scale

Now, we define the transfer function of a frequency warped Wiener
filter on z domain by

H̃w(z̃(z)) =

p−1X
n=0

h̃w[n]z̃−n (7)

Then, the estimated speech based on filter H̃w(z̃(z)) is given by

ŝw[n] =

p−1X
k=0

h̃w[k]xk[n] (8)

where xk[n] is the output signal of k cascaded all pass filter z̃−k.
In the spectral domain, (8) can be rewritten as

Ŝw(ejλ) = H̃w(ejλ̃)X(ejλ) (9)

Let ˜̂
Sw(ejλ̃) be the spectrum of the bilinear transformed signal

of ŝw[n]. Since Ŝw(ejλ) =
˜̂
Sw(ejλ̃) from the definition of fre-

quency warped signal as in (1), we have the following relation
˜̂
Sw(ejλ̃) = H̃w(ejλ̃)X̃(ejλ̃) (10)

This equation shows that H̃w(ejλ̃) is a linear filter to estimate the

spectrum ˜̂
Sw(ejλ̃) from the input spectrum X̃(ejλ̃) on the warped-

frequency domain.
Now, the sum of the square error is given by

ξ{h̃w} =
∞X

n=0

(s[n] − ŝw[n])2 (11)

=
1

2π

Z π

−π

˛̨
S̃(ejλ̃)−H̃w(ejλ̃)X̃(ejλ̃)

˛̨2 ·
˛̨
W̃ (ejλ̃)

˛̨2
dλ̃ (12)
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re dλ

dλ̃
=

˛̨
W̃ (ejλ̃)

˛̨2
with W̃ (z̃) =

√
1−α2

1+α·z̃−1
.

Unlike (6), (12) shows that the error signal energy on the
ed frequency domain is weighted by W̃ (ejλ̃).

The minimization of (11) with respect to {h̃w [k]} gives the
wing normal equations
1

0

φ̃xx(m, k)h̃w(k) = φ̃sx(0, m) (m = 0, .., p − 1), (13)

re
φ̃xx(m, k) =

∞X
n=0

xm[n]xk[n] (14)

φ̃sx(m, k) =
∞X

n=0

sm[n]xk[n] (15)

e warped frequency domain (14) and (15) can be rewritten as

xx(m,k) =
1

2π

Z π

−π

˛̨
X̃(ejλ̃)W̃ (ejλ̃)

˛̨2· ej(m−k)λ̃ dλ̃ (16)

(m,k) =
1

2π

Z π

−π

S̃(ejλ̃)X̃∗(ejλ̃)
˛̨
W̃ (ejλ̃)

˛̨2·ej(m−k)λ̃ dλ̃

(17)
refore, φ̃xx(m,k) is the autocorrelation function of the sig-
x̃w[n] whose Fourier transform is equal to the frequency

ed and frequency weighted spectrum X̃(ejλ̃)W̃ (ejλ̃). Simi-
, φ̃sx(m,k) is the crosscorrelation function between x̃w,m[n]

s̃w,k[n] whose Fourier transform is S̃(ejλ̃)W̃ (ejλ̃). We call
(m,k) and φ̃sx(m,k) as the “generalized” autocorrelation and
scorrelation functions, respectively. Fig. 1 defines the gener-
d crosscorrelation function.

x[n]� Cross
Corr.

� r̃xy[m]

y[n]�

ym[n]

z̃(z)−m

�

Figure 1: Generalized crosscorrelation function.

From (16) and (17), it should be noted that each of φ̃xx(m, k)

φ̃sx(m, k) is a function of the difference (k −m). Thus, both
tions are calculated from the sum of finite terms as

φ̃xx(m,k) = r̃xx[k − m] =

N−1X
n=0

x[n]x|k−m|[n] (18)

φ̃sx(0, k) = r̃sx[k] =

N−1X
n=0

s[n]xk[n] (19)

Approximation of crosscorrelation function r̃sx

ractical situation, since both the speech and noise are unob-
able, the crosscorrelation function between clean and noisy
ch is approximated as

x[m, t] ≈
8<
:

r̃xx[m, t]−s· ˆ̃rnn[m, t]; if lr[t] ≥ v2

γ(r̃xx[m, t]−s′ · ˆ̃rnn[m, t])
+ r̃fx[m]; if lr[t] < v2

(20)



where s is a scaling factor, given by

s =

j
1; if r̃xx[0] > r̃nn[0]

0.9r̃xx[0]/ˆ̃rnn[0]; if r̃xx[0] ≤ ˆ̃rnn[0]
(21)

γ = (σ̃f/σ̃x)(lr[t]−v2)/(v1−v2) (22)

r̃fx[m] is the floored crosscorrelation function between x[n] and a
windowed random sequence whose rms value σ̃f is set to -30 dB
from the maximum rms value of the input speech, σ̃x is the rms
value of current frame, lr[t] is the likelihood ratio given in (24), s′

is the ratio between residual energy of current frame to the residual
energy of noise, which compensates the noise level between noise
model and current noise frame, v1 = 0.1 and v2 = 0.145 are two
experimentally tunable constants. The parameter γ prevents the
abrupt transition between non-speech and speech segment.

3. System Overview
3.1. Voice Activity Detection

Fig. 2 shows the block diagram of the proposed technique. The
generalized autocorrelation of the current frame and the esti-
mated generalized noise autocorrelation from the corresponding
speech/silence decision of the VAD block are used in the Mel-
Weiner filter design block to estimate the filter coefficients.

The voice activity detector (VAD) is based on Itakura-Saito
distortion measure between autoregressive (AR) model [14] of
noise and input speech signal. From initial 20 frames a noise
model is created, i.e., the model is assumed to be M th order au-
toregressive with coefficients b̃

t = [̃b0b̃1 . . . b̃M ], where b̃0 = 1.
For the input frame t, r̃xx[m, t] is calculated to estimate Itakura-
Saito distortion dIS [t] and likelihood ratio lr[t] as follows:

dIS[t] =
1

σ2
eñ

δ(x̃; b̃) + log
σ2

eñ

σ2
ex̃

− 1 (23)

and
lr[t] = δ(x̃; b̃) − 1 (24)

where
δ(x̃; b̃) = Rb̃[0]r̃xx[0] + 2

MX
i=1

Rb̃[i]r̃xx[i] (25)

σ2
eñ and σ2

ex̃ are the residual energies of the estimated noise and
current frame t, respectively, and Rb̃[i] is the autocorrelation func-
tion of the AR coefficients.

Finally, dIS[t] is compared with a threshold value η, which is
calculated as follows:

η = mean(dIS[t]) + Nth · std(dIS[t]) (26)

where mean(dIS[t]) is the exponentially weighted average of
dIS[t] and std(dIS[t]) is the standard deviation of dIS [t] over all
previous noise frames, and Nth is a threshold factor with value of
0.01. For dIS[t] < η, the frame t is detected as noise, otherwise,
speech frame.

3.2. Noise Estimation

If frame t is detected as noise, a lag window of length 50 is ap-
plied on r̃xx[m]. Now, the estimated generalized autocorrelation
function of noise ˆ̃rnn[m] is updated by accumulating r̃xx[m, t] as
follows:

ˆ̃rnn[m, t] =

8<
:

β ˆ̃rnn[m, tp] + (1 − β)r̃xx[m, t];
if frame t is silence

ˆ̃rnn[m, tp]; if frame t is speech
(27)

where tp is the previous noise frame and β is the forgetting factor
with value of 0.96.
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igure 2: Mel-LPC analysis with the proposed Wiener filter.

Filtering in Autocorrelation Domain

ring is done in the autocorrelation domain to estimate the gen-
zed autocorrelation function of the filtered speech ŝw[n] as
ws:

ˆ̃rss[m] =
∞X

n=0

ŝw[n]ŝw,m[n] (28)

=

p−1X
k=−p+1

rh̃h̃[k]r̃xx[m − k] (29)

re r̃xx[m] is the generalized autocorrelation function of the
y speech, and rh̃h̃[m] is the autocorrelation function of h̃w[m].
lly, the Mel-prediction coefficients are obtained by Durbin’s
rithm from ˆ̃rss[m]. Although the estimated model (3) in-

es the frequency weighting W̃ (ejλ̃), this is easily removed by
rse filtering in the generalized autocorrelation domain using
(z̃)W̃ (z̃−1)}−1.

Blind Equalization

d equalization is applied on the cepstral coefficients in order
inimize the channel effects. This technique is based on the

t mean square algorithm, which minimizes the mean square
r computed as a difference between the current and reference
trum [13]. We use the same algorithm as that implemented in
[11], and the long-term cepstrum of training clean speech is
as reference cepstrum.

4. Evaluation on Aurora 2
Experimental Setup

proposed system was evaluated on Aurora 2 database. In this
riment, 12 Mel-LPC order was used. The speech signal with-
reemphasis was windowed using Hamming window of length
s with 10 ms frame period. The frequency warping factor was

o 0.4. The HMM was trained on clean condition with 16 states
word and a mixture of 6 Gaussians per state. As front-end,
epstral coefficients and their delta coefficients including 0th

s were used.

Recognition Results

Fig. 3, it has been shown that the highest word accuracy is
ned at the order of 5. This optimum order is much lower than
of the all-pole model in Mel-LPC. This result from the fact
fine spectrum is not required in estimation of all-pole model.
sequently, the order of filter is set to 5.
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Figure 3: Recognition accuracy as a function of filter order.

The recognition accuracy for set A without and with proposed
filter are given in Table 1 and Table 2, respectively. Table 3 shows
the average accuracy for sets B and C. From tables, it is observed
that Mel-Wiener filter improves the word accuracy except under
match condition (clean). The average recognition accuracy over
SNRs 20 to 0 dB are 87.53%, 85.99% and 84.11% for sets A, B
and C, respectively.

Finally, we compare our current result with ETSI AFE, which
is shown in Table 4. The recognition result for AFE is obtained
from [12]. As compared to the result of AFE, our system slightly
outperforms AFE. As shown in Table 4, the overall word accuracy
for our proposed system is 86.23%, while the accuracy for AFE
is 86.04%. In our previous implementation, we got 78.76% over-
all word accuracy [10]. So, the current result shows that substan-
tial improvement has been achieved with the present technique.
The computational cost of the proposed filter is 1.72 times of Mel-
LPC analysis for addition/subtraction and 0.46 times for multipli-
cation/division operations.

Table 1: Recognition accuracy without Wiener filter for set A.
Noise cln 20dB 15dB 10dB 5dB 0dB -5dB

Subway 99.05 95.30 86.83 69.11 42.46 20.05 10.80
Babble 98.73 87.09 68.59 46.28 23.31 9.70 5.05
Car 98.78 93.20 78.94 53.00 28.36 12.08 7.46
Exhib 98.98 95.37 88.12 69.58 37.46 17.86 10.55
Average 98.89 92.74 80.62 59.50 32.90 14.93 8.48

Table 2: Recognition accuracy with proposed filter for set A.
Noise cln 20dB 15dB 10dB 5dB 0dB -5dB

Subway 98.43 97.85 96.62 94.04 87.32 65.06 30.40
Babble 98.19 97.34 96.13 93.47 83.49 55.99 22.64
Car 98.63 97.94 97.64 95.91 90.07 68.03 25.20
Exhib 98.73 97.25 96.45 93.52 83.65 62.67 29.44
Average 98.50 97.60 96.71 94.24 86.14 62.94 26.92

5. Conclusion
An improved Mel-Wiener filter has been presented, which is di-
rectly estimated from the input signal on the linear frequency scale
and effectively implemented in the autocorrelation domain incor-
porating with the Mel-LPC based spectral analysis. It has been
shown that our proposed Mel-Wiener filter incorporating with the
Mel-LPC can be used as front-end to improve the recognition ac-
curacy and it slightly outperforms the ETSI AFE for DSR. The
proposed filter is computationally efficient because it does not re-
quire any time-frequency conversion of signal, which saves a large
amount of computational cost. As a result of recognition exper-
iments, it is found that the optimum filter order is 5, which is
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Table 3: Average recognition accuracy for sets B and C.
est Set cln 20dB 15dB 10dB 5dB 0dB -5dB

(w/ WF) 98.50 97.52 96.32 93.04 83.42 59.61 25.71
(w/o WF) 98.89 91.18 77.08 54.39 29.27 13.72 7.76
(w/ WF) 98.13 96.99 95.60 91.41 80.47 56.08 25.34
(w/o WF) 98.94 91.72 84.10 69.37 45.63 21.36 10.12

le 4: Comparative result for proposed system and ETSI AFE.
Set A Set B Set C Overall

Proposed 87.53 85.99 84.11 86.23
ETSI AFE 87.18 86.29 83.25 86.04

ller than that of Mel-LPC analysis, which further reduces the
putational cost. The overall accuracy obtained by the proposed
em is about 86.23%.
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