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Abstract
We use a combination of linear support vector machines and hid-
den markov models for dialog act tagging in the HCRC MapTask
corpus, and obtain better results than those previously reported.
Support vector machines allow easy integration of sparse high-
dimensional text features and dense low-dimensional acoustic fea-
tures, and produce posterior probabilities usable by sequence la-
belling algorithms. The relative contribution of text and acoustic
features for each class of dialog act is analyzed.
Index Terms: dialog acts, discourse, support vector machines,
classification probabilities, Viterbi algorithm.

1. Introduction
There are several possible cues that humans and machines can use
to identify the meaning of an utterance, such as whether it is a
acknowledgement or clarification. Several approaches have been
proposed to integrate such cues [1] [2] [3], using a combination of
neural networks, decision trees, hidden markov models (HMMs),
principal components analysis, and nearest neighbor algorithms.

We use support vector machines (SVMs) [4] and HMMs to
obtain dialog act (DA) classification accuracy on a standard cor-
pus that is better than previously published results. With SVMs,
we make no special effort, other than scaling, to combine sparse
text representations and dense acoustic measurements of differ-
ent kinds. Posterior probability estimates from SVMs are input
to a Viterbi algorithm [5] to make use of sequential information.
This SVM-HMM combination results in classification accuracies
of 42.5% and 59.1% respectively using acoustic and text features
separately and 65.5% together.

In this document, we briefly describe the task and classifica-
tion algorithms used, followed by several measurements of perfo-
mance in experiments using text features only, acoustic features
only, and a combination thereof.

Note that the SVMs use strictly local information, i.e. from
only the current DA. The Viterbi algorithm allows use of the pre-
vious DA — its features, not its true label. No higher level knowl-
edge, such as game information, is used. Also, the text features
used are based on manual transcripts, while the acoustic features
are automatically extracted.

2. Task Description
The HCRC MapTask corpus [6] is a collection of 128 2-speaker di-
alogs, of which we used the 64 ‘no-eye-contact’ dialogs. Each dia-
log has a ‘giver’ giving directions on a shared map to a ‘follower’,
and is segmented into parts called ‘Dialog Acts’ (DAs). We as-
sume this segmentation has already been done manually. DAs do
not span speaker turns; turns can consist of multiple DAs.
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DAs are labelled with one of a number of tags; the HCRC
llers used twelve tags, and a thirteenth for ‘uncodable’. As this
y was explorational, we simply took the task to be a 13-class
sification problem. The tags, and their relative frequencies, are
ribed in Table 1.

e 1: Tags used by the HCRC MapTask Labellers, from the
og Structure Coding Manual. Also shown is the percentage of
og acts of each type.
g %age Description
struct 15.1 commands partner to carry out action
plain 7.5 states information that partner did not

elicit
ign 7.2 checks attention & agreement of part-

ner, or their readiness for next DA
eck 8.0 requests partner to confirm informa-

tion that checker is partially sure of
ery-yn 6.0 Yes/No question other than a check or

align
ery-w 3.0 any other question
k 21.0 acknowledgement: minimal verbal

response showing that speaker heard
preceding DA

arify 4.0 repetition of information already
stated by speaker, often in response to
a check DA

ply-y 12.6 affirmative reply to any query
ply-n 3.3 negative reply
ply-w 3.2 any other reply
ady 7.9 DA that occurs after end of a dialog

game and prepares conversation for a
new game

codable 1.2 None of the above

The experiments reported here were done with four-fold cross-
ation. The 64 dialogs considered here are organized into

t parts, q1 to q8. We used four splits, with the n-th split
1, 2, 3, 4) having test data from q{2n − 1} and q{2n} and

raining data from the other six parts. Text features differed in
split as they could only make use of the split’s training part.

In this way, each of the 14810 examples in the corpus was a
example in exactly one split. The confusion matrices presented
are sums of all confusion matrices from all splits. The final

sification accuracy is the sum of all correctly classified test
ples divided by 14810.

In the interests of result reproducibility, we have placed the
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data and data splits used in our experiments online1. Using the
exact splits is important, as results varied widely across splits. For
example, our final classification accuracy of 65.8% is a weighted
sum of the accuracies for each split of 63.4%, 61.9% 69.4% and
70.9%. This wide variance is disconcerting but, as will be seen,
even 61.9% is better than previously reported results that do not
assume knowledge of the previous DA or higher level information.

3. Classification Algorithms
Our strategy is to use linear SVMs on individual data points, and
then Viterbi decoding to make use of some contextual information.
The Viterbi decoding procedure is a bit non-standard as we have
posterior probabilities instead of output symbol probabilities.

3.1. Support Vector Machines

SVMs are binary classifiers. Given set of training examples, each
a D-dimensional vector, with labels -1 or 1, a linear SVM learns
weights w ∈ R

D and a threshold b ∈ R to produce a final de-
cision function f(x) = sign(wTx + b). The value of f(x) is
between −∞ and ∞ but can (and should) be Platt-scaled [7] to
produce a value between 0 and 1 that is a good estimate of the
probability that example x is in class 1.

There are several ways to reduce multiclass problems to binary
problems [8]. A fast method is to split the problem into n(n−1)/2
binary classification problems and combine the results [9] [10].
The probability estimates from each binary classification problem
can be combined to produce an estimate of the posterior probabil-
ity for x over the n classes [11].

Label bias was handled by associating a weight of 1

p
to each

class with empirical training set probability p.

3.2. HMM Decoding

Previous work in this domain [12] [3] [13] reports improved recog-
nition rates when knowledge of the previous dialog act is assumed.
This is because the distribution of DAs differs greatly with the pre-
vious dialog act — Table 2 shows these distributions for part of the
MapTask corpus. For example, the probability of an affirmative re-
ply is about 0.5 after a binary question or check or alignment, but
under 0.05 after other types of DAs. And while checks and align-
ments are also questions, the probability of a negative reply after
an alignment is about 0.01, after a check 0.08 and after a binary
question 0.27.

Table 2: Transition matrix showing which dialog acts followed
which dialog acts. The (i, j)th entry is the percentage of DAs after
one of class i that are of class j. For example, of the dialog acts
immediately following a binary question (qy), 45% were affirma-
tive replies (ry) and 27% negative replies (rn).

in ex al ch qy qw ac cl ry rn rw rd un
in 4 5 8 13 9 4 48 0 1 0 1 5 2
ex 8 10 5 7 7 3 43 1 2 2 0 11 2
al 12 4 3 7 4 2 6 2 51 1 2 5 1
ch 3 3 2 2 2 2 4 10 55 8 2 4 2
qy 1 3 0 2 4 1 4 0 45 27 7 3 2
qw 4 2 4 3 4 2 5 11 3 2 48 10 2
ac 29 10 12 6 6 3 11 4 2 1 1 14 1
cl 4 5 11 15 3 2 47 4 4 1 0 4 0
ry 17 7 7 9 5 2 23 9 4 0 1 14 1
rn 7 19 3 6 5 3 34 12 1 1 4 7 0
rw 7 6 4 8 3 5 47 2 2 1 6 10 2
rd 46 11 8 7 12 3 3 2 1 0 2 3 2
un 15 10 4 6 7 4 18 3 10 3 4 9 6

1http://people.cs.uchicago.edu/∼dinoj/da
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If the computer is a participant in the dialog, knowledge of
ious DAs on one conversation side can be assumed, as in Tay-
t. al.[12]. In general, knowledge of the preceding DA cannot
ssumed. Of course, it can be estimated, and Stolcke et. al. [2]
d that a HMM improved perfomance.
The HMM assumption is that the sequence of observations
. . . , xT is generated by an underlying first-order Markov se-
ce of states q1, . . . , qT with each observation xt generated by

corresponding state qt only. Note that we are using the DA
ses as states.
Suppose there are N states. If we know the transition proba-
ies P (qt+1|qt), the output symbol probabilities
t|qt), and the initial probability distribution P (q1), the Viterbi
ard-decoding algorithm [5] is a dynamic programming algo-

that outputs the most likely state sequence q1, . . . , qT given
utput sequence x1, . . . , xT .
We can estimate the transition probabilities from the training
However, we do not know P (xt|qt), but do know the posterior
ability P (qt|xt) for each xt in the test set [11]. Bayes Rule
some other assumptions can be employed to give the slightly
ified Viterbi algorithm below [14].

δjt := max
q1,...,qt−1

P (x1, . . . , xt, q1, . . . , qt−1, qt = j)

ψjt := argmaxqt−1
δjt

use P (q1|x1) for the initial state distribution, and then com-
δ and record ψ recursively:

δj,1 = P (q1 = j|x1)

δj,t≥2 = P (qt = j|xt)

NX

n=1

P (qt = j|qt−1 = n)δn,t−1

ψj,t≥2 = argmaxqt−1
P (qt = j|qt−1 = n)δn,t−1

equation for δj,t≥2 is probabilistically incorrect; it should be
t|qt). As we only want to find the most likely state sequence,
not its probability as well, we can use c · P (xt|qt) instead
(xt|qt), as long as c is a positive real number independent

t. Bayes Rule says that P (xt|qt) = P (qt|xt)P (xt)/P (qt).
e we reweighted the probabilities in SVM training so that all
ses were equally likely, P (qt) = 1

N
is independent of qt, as

(xt). Thus we can substitute P (qt|xt) for P (xt|qt) in our
ified Viterbi procedure; ψj,t remains the same.
Finally, backtracking obtains the most likely state sequence
. . . , πT :

πT = argmaxqδqT

πt<T = ψπt+1,t+1

4. Classification Experiments
Classification with acoustic features

used the acoustic features mentioned by Stolcke et. al. [1] that
e use of duration (but not pauses), intensity, pitch, speaking
[15], and speaker identity. Pitch was measured with the ESPS
rithm implemented in the Snack Toolkit [16]. Each feature
scaled to between -1 and 1 based on the minimum and maxi-
values of the feature among training examples.

This resulted in a classification accuracy of 41.4% with a lin-
SVM, which was increased to 42.5% after Viterbi decoding.
ever, as the corresponding confusion matrix in Table 3 shows,



nearly half the classes were rarely recognized, and over half the
examples were classified as the most common classes.

This indicates that our acoustic features simply did not sepa-
rate the data and need to be improved. However, previous work on
this dataset using only acoustic features (and no context) produced
similar recognition rates, such as 42% in [12].

4.2. Classification with text features

We represented text features of each DA using a sparse bag-of-n-
grams model. Our features included all unigrams, bigrams, and
trigrams that appeared at least twice in the training set. We also
had a feature for a unigram that was the only word in a DA.

Suppose F of these features occurred at least twice. F was
between 9000 and 10000, depending on the data split. Then
each DA x in the training and test set was represented by a
(F + 1)-dimensional feature v = [v1v2 · · · vF+1]

T where vj ,
j = 1, . . . , F was the number of times x generated feature vj

while vF+1 was the number of times x generated a unigram fea-
ture that was not among the F features. This dealt, albeit crudely,
with the out-of-vocabulary problem.

Applying a linear SVM to this resulted in 58.1% classification
accuracy, and in 59.1% once Viterbi decoding was applied. The
corresponding confusion matrix is in Table 4. This is much better
than the 42.8% when using 1-nearest neighbors i.e. classifying
each test DA with the label of the training DA with the highest
cosine similarity [3]. While it is less than the 62.1% reported using
Transformational Based Learning by Lager and Zinovjeva [13],
their algorithm assumed knowledge of the previous DA.

Table 3: Confusion matrix using acoustic features with a linear
SVM and Viterbi decoding. Classification accuracy was 42.5%

inst ex al ch qy qw ac cl ry rn rw rd un
in 1932 7 72 4 29 0 25 14 44 3 4 107 0
ex 308 211 25 245 11 17 178 4 52 3 7 43 0
al 441 15 171 43 29 1 83 5 90 4 3 184 1
ch 89 135 12 516 11 17 315 2 65 2 6 15 0
qy 368 37 89 154 89 11 81 5 28 2 6 19 0
qw 57 51 12 92 8 13 165 1 20 3 3 13 0
ac 59 55 21 159 6 6 2067 8 354 7 6 358 3
cl 448 12 18 7 11 1 12 8 48 2 7 37 0
ry 130 19 21 56 3 3 780 8 597 15 10 218 0
rn 27 5 5 23 0 1 173 1 146 13 4 85 0
rw 165 39 12 79 8 0 55 13 63 0 11 24 0
rd 63 5 29 9 4 0 246 1 137 7 3 662 3
un 10 0 12 5 3 0 60 1 46 1 0 43 1

Table 4: Confusion matrix using text features with a linear SVM
and Viterbi decoding. Classification accuracy was 59.1%

inst ex al ch qy qw ac cl ry rn rw rd un
in 1780 90 47 101 27 18 61 33 17 2 18 43 4
ex 162 591 17 93 35 11 84 22 21 20 26 20 2
al 119 29 382 54 44 8 327 9 9 2 7 80 0
ch 182 114 42 520 106 23 96 30 34 12 14 9 3
qy 66 27 39 129 550 15 30 8 8 5 11 1 0
qw 38 16 11 27 25 254 30 4 5 2 11 10 5
ac 49 42 86 53 13 8 2103 10 349 49 2 326 19
cl 332 60 12 54 8 8 35 44 11 3 33 5 6
ry 26 38 13 28 6 4 420 14 1234 3 11 59 4
rn 2 12 0 3 6 0 33 0 3 419 2 0 3
rw 99 87 8 27 10 6 23 16 18 7 146 17 5
rd 28 6 36 12 3 6 355 4 10 2 5 692 10
un 12 3 2 18 3 7 59 3 2 4 5 31 33

4.2.1. Preprocessing Text with PCA

Serafin and di Eugenio [3] suggest using Principal Components
Analysis on the sparse text features before applying a nearest
neighbors classifier. We therefore ran a linear SVM on the first
100 principal components of the sparse text features and obtained
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e 5: Confusion matrix using acoustic and text features with
ear SVM and Viterbi decoding. Classification accuracy was
%.

inst ex al ch qy qw ac cl ry rn rw rd un
1923 48 42 30 24 5 23 67 9 6 18 41 5
122 598 36 120 32 12 64 31 22 21 23 18 5
126 24 587 34 49 7 71 15 9 2 8 137 1
50 118 27 683 102 38 93 17 22 7 13 13 2
35 35 54 154 534 18 16 19 3 5 8 6 2
12 26 6 33 21 280 29 5 6 2 6 7 5
19 54 51 52 10 8 2300 5 280 42 4 267 17
356 36 19 23 5 3 7 87 15 0 40 18 2
35 33 10 16 3 2 408 29 1282 6 10 22 4
6 13 0 9 6 0 33 2 4 404 1 2 3
87 89 9 30 7 3 12 26 23 9 153 15 6
32 7 39 5 1 4 229 6 7 2 5 824 8
16 4 2 9 2 10 56 4 2 6 4 26 41

sification accuracy of 55.7%, compared to 58.1% without us-
PCA. We thus performed no further experiments with PCA.

Classification with both features

all that we have so far for each DA aG-dimensional dense vec-
epresenting its acoustic properties and a F -dimensional sparse
or representing its textual features. F ≈ 10000 is much larger
G ≈ 50. The easiest way of integrating them is to concate-
the two vectors to form a (F +G)-dimensional sparse vector
feed this to the SVM.
With vector concatenation, classification accuracy was 61.8%
g a linear SVM and 65.5% after Viterbi decoding. The confu-
matrix in Table 5 has more details. This compares with 59.1%
42.5% using text and acoustic features separately.
This is better than previously reported results for this dataset.
er accuracy, such as 73.9% in [3], has only been achieved by

ming knowledge of higher level discourse information such as
e segmentation and game type for each DA.
A better sense of how different features helped can be found
able 6. It has precision, recall and F-scores for the cases when
stic and text features were used separately and together.
Unsurprisingly, all classes were better recognized with bet-
recision using text than acoustic features. Bear in mind that
re using manually, not automatically, transcribed text features.
sidering F -scores, acoustic features did not aid text features in
gnizing binary questions, possibly because most query-yn
have helpful bigrams like “have you” or “do you” or “am i”.

y help a little with recognizing complex queries, since though
75% of most query-w DAs have the word “where”, “how”

what”, so do other DAs. Acoustic features also help with
gnizing questions that were check or align, but not with
gnizing any replies. They did help with recognizing ready,
truct and ack DAs.

. Online Classification

acoustic features we used were normalized by conversation
, which requires that one needs to see the entire dialog before
sifying any dialog act. This makes online testing impossible.
We thus investigated the possibility of not normalizing the
stic features. Scaling was still done as it can be applied on-
to individual test examples. The classification accuracy was
42.4% and 65.3% using acoustic and acoustic+text features

ectively, an absolute drop of only 0.1% and 0.2% respectively
the non-normalized case.

Since all other parts of our algorithmic framework are online
e test phase (including the Viterbi algorithm, since it is only a
ard pass), this algorithm is suitable for online testing.



Table 6: Precision, Recall, and F scores for each class using
acoustic (A), text (T) or both (B) features. Values are percentages.

Tag Precision Recall F-score
A T B A T B A T B

instruct 47 61 68 86 79 86 61 69 76
explain 36 53 55 19 54 54 25 53 55
align 34 55 67 16 36 55 22 43 60
check 37 46 57 44 44 58 40 45 57

query-yn 42 66 67 10 62 60 16 64 63
query-w 19 69 72 3 58 64 5 63 68

ack 49 58 69 66 68 74 56 62 71
clarify 11 22 28 1 7 14 2 11 19
reply-y 35 72 76 32 66 69 34 69 72
reply-n 21 79 79 3 87 84 5 83 81
reply-w 16 50 52 2 31 33 4 38 40
ready 37 54 59 57 59 70 44 56 64

uncodable 13 35 41 1 18 23 1 24 29

5. Conclusion
In this paper, we showed that linear support vector machines can
easily integrate text and acoustic features, and that class posterior
probabilities estimated from their outputs can be input to HMMs
to produce a simple, fast dialog act classification algorithm.

Our acoustic features improved the quality of recognition for
a few classes, namely instructions, acknowledgements, and all
queries other than binary ones.

Future work will investigate the use of better prosodic features,
Multiple Kernel Learning [17][18] to integrate different features,
SVMs that directly incorporate sequential information [19], and
methods for DA segmentation.
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