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Abstract

This paper proposes an algorithm for the recognition and sepa-
ration of speech signals in non-stationary noise, such as another
speaker. We present a method to combine hidden Markov models
(HMMs) trained for the speech and noise into a factorial HMM to
model the mixture signal. Robustness is obtained by separating the
speech and noise signals in a feature domain, which discards un-
necessary information. We use mel-cepstral coefficients (MFCCs)
as features, and estimate the distribution of mixture MFCCs from
the distributions of the target speech and noise. A decoding algo-
rithm is proposed for finding the state transition paths and estimat-
ing gains for the speech and noise from a mixture signal. Simu-
lations were carried out using speech material where two speak-
ers were mixed at various levels, and even for high noise level (9
dB above the speech level), the method produced relatively good
(60% word recognition accuracy) results. Audio demonstrations
are available at www.cs.tut.fi/˜tuomasv.
Index Terms: speech recognition, speech separation, factorial hid-
den Markov model.

1. Introduction
One of the major problems in automatic speech recognition (ASR)
is the degraded performance when the target speech is interfered
with a noise source. Methods which try to overcome this problem
can be roughly divided into two categories: 1) those which try to
estimate the clean speech waveform or its features from the noisy
signal, i.e., which perform speech separation, and 2) those devel-
oped and trained to recognize noisy speech (see [1] for a review.)
Non-stationary noise which has similar acoustic characteristics as
the target speech is especially difficult for all methods. Since a
good estimate of the interference is a requirement for its efficient
suppression, an accurate acoustic modeling of the noise can pro-
vide an increase in the recognition quality.

The ASR system proposed in this paper achieves robustness
to interference by doing the separation in the feature domain. The
speech and noise signals are modeled with hidden Markov models
(HMMs), which are estimated beforehand from material where the
signals are present in isolation. We do not commit ourselves to a
specific method for training the HMMs, but Section 5 presents one
possibility for this. To model the noisy speech signal, the source-
specific HMMs are combined into a factorial HMM, as explained
in Section 2. The likelihoods for noisy observation vectors are cal-
culated from speech and noise distributions, as explained in Sec-
tion 2.1. The recognition is done by finding the most likely state
transition paths jointly for the speech and noise using the algorithm
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re 1: A factorial HMM consisting of Markov chains for the
ch and noise (solid lines) can be synthesized into a HMM con-

ing all the combinations of the speech and noise states (dotted
s).

osed in Section 3. Section 4 presents a method for synthesiz-
the sources separately, and Section 5 presents the simulations.

. Factorial Model for the Mixture Signal

en multiple sources are present simultaneously, the acoustic
ture signal is the superposition of the source signals. In this pa-
we consider only two sources, which are referred as “speech”
“noise”, and labels {s} and {n} are used to refer to their pa-
eters, respectively. Both signals are modeled with separate
Ms, which are assumed to be trained separately beforehand.
mixture signal is modeled with a factorial HMM [2] consist-
of separate Markov chains for the speech and noise, which
el the contribution of the speech and noise signals in the mix-
, respectively.
The topology of the Markov chains is the same as the original
Ms, as illustrated in Figure 1. The transitions of the hidden

variables q{s} and q{n} of the speech and noise are statisti-
y independent from each other, so that the state transition prob-
ity from state (i, k) to (j, l) is the product of the state transition
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probabilities of both chains:

P (qt+1

{s} = j, qt+1

{n} = l | qt
{s} = i, qt

{n} = k)

= P (qt+1

{s} = j | qt
{s} = i) P (qt+1

{n} = l | qt
{n} = k), (1)

where t is the observation index.
The likelihood of an observation, however, depends on the

state of the both chains, and it should be determined using the
linear superposition of acoustic signals. In addition to factorial
HMMs, also the term parallel mode combination has been used
for this kind of approach by Gales and Young [3], who used single-
state and two-state HMMs to model the noise. In our application
the left-to-right topology is most suitable since the noise is as-
sumed to be structured, but the topology can be fully connected
as well.

Several algorithms based on factorial HMMs simplify the mix-
ing process by modeling the power spectrum of the mixture sig-
nal at a certain time-frequency point as a maximum of the source
power spectra, plus a noise term [4]. The approximation leads to
a closed-form expression for the distribution of the sum of speech
and noise [5, 6] when the power spectra are used as observations.
In ASR, however, the power spectrum representation lacks invari-
ancy to some features such as pitch, and therefore the approxi-
mation requires a large amount of components to model different
phoneme-pitch combinations.

2.1. Likelihoods for MFCCs

Mel-frequency cepstral coefficients (MFCCs) are commonly used
to parameterize the rough shape of the spectrum in ASR. For a
single frame of speech they are calculated by measuring the power
within mel-frequency bands, taking the logarithm, and decorrelat-
ing the resulting vector by the discrete cosine transform (DCT).
The above-explained max-approximation of the sum is not reason-
able for MFCCs, and therefore estimating the likelihood of a mix-
ture observation requires more accurate modeling of the mixing
process when MFCCs are used as features.

The probability density function of an observed MFCC vector
ot is commonly modeled by a Gaussian mixture model (GMM),
the parameters of which are different for each state. In the follow-
ing we derive the distribution for the mixture signal MFCCs of the
factorial HMM state (i, k) using the GMMs of the target state i
and noise state k. The process has to be repeated for all i and k to
get distributions of all state combinations.

For simplicity, we formulate the distribution here for a single-
component GMM, which is the normal distribution N . For clean
speech, the likelihood of an observation ot is given as

P (ot) = N (ot | μ
{m}
{s} ,Σ

{m}
{s} ), (2)

where μ
{m}
{s} is a mean vector and Σ

{m}
{s} is a covariance matrix of

the distribution, and label {m} is used to denote MFCC-domain
parameters. The formulation can be extended for multi-component
GMMs, as explained later.

To enable estimating the likelihood of a mixture observa-
tion from the target and noise distributions, the speech and noise
MFCC distributions have to be transformed to the power spectral
domain, where the distribution of their superposition can be esti-
mated. From the power spectral domain the parameters are again
transformed back to the MFCC domain, as illustrated in Figure 2.
The power-spectral domain mean and covariance of the speech are
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re 2: Calculation of the mixture MFCC distributions for a sin-
state.

ulated using the steps below. The method is essentially the
e as presented in [3], extended for multiple states, and the pro-
d decoding algorithm is original.
First, the logarithm of the powers in mel-frequency bands is
ined by taking an inverse DCT of the MFCCs, which can be
ulated by multiplication by inverse of the DCT matrix C.

refore, the distribution of the logarithms of the powers is also
rmal distribution, with mean

μ
{c}
{s} = C

−1
μ

{m}
{s} (3)

covariance

Σ
{c}
{s} = C

−1
Σ

{m}
{s} (C−1)T , (4)

re label {c} denotes cepstral-domain parameters.
The energies within mel-frequency bands are obtained by tak-
the exponential function of the log-energies. Their mean μ

{e}
{s}

covariance Σ
{e}
{s} can be shown to be [3]

μ
{e}
i{s} = exp(μ

{c}
i{s} + Σ

{c}
ii{s}/2), (5)

Σ
{e}
ij{s} = μ

{c}
i{s}μ

{c}
j{s}[exp(Σ

{c}
ij{s}) − 1], (6)

re label {e} denotes the power-spectrum domain parameters,
enotes the ith element of vector μ, and Σij denotes the (i, j)th

ent of matrix Σ.
Equations from (3) to (6) are applied to both the speech and
e, to result in their power-spectral means μ

{e}
{s} and μ

{e}
{n} and

riances Σ
{e}
{s} and Σ

{e}
{n}, respectively. The expectation value

he energy of the superposition of statistically independent sig-
is the sum of their energies. Therefore, the mean vector of the

-energies of the mixture is

μ
{e}
{x} = g{s}μ

{e}
{s} + g{n}μ

{e}
{n}, (7)



where the label {x} denotes mixture parameters, and g{s} and
g{n} are the gains of the speech and noise, respectively. They
are used to accommodate possible level differences between the
training and target material, and their estimation is explained in
Section 3. Similarly, the covariances of statistically independent
signals sum linearly, so that that covariance matrix of the mel-
energies of the mixture signal is

Σ
{e}
{x} = g2

{s}Σ
{e}
{s} + g2

{n}Σ
{e}
{n}. (8)

Since the distribution of the logarithm of mel-energies is nor-
mal, the distribution of mel-energies is log-normal. There is
no closed-form solution for the distribution of the sum of log-
normally distributed random variables [7]. For a given observa-
tion sequence the probabilities could be estimated, for example,
by numerical integration, but this is not feasible because of the
computational complexity. However, it has been observed that the
sum can be rather well be approximated by another log-normal
distribution [7] and there are several methods for calculating its
parameters.

We use the method proposed by Gales and Young [3], which
is summarized as follows: first, the mean and covariance of the
log-energies of the mixture are given as

μ
{c}
i{x} = log

(
μ
{e}
i{x}

)
−

1

2
log

⎛
⎝ Σ

{e}
ii{x}

(μ
{e}
i{x})

2
+ 1

⎞
⎠ (9)

and

Σ
{c}
ij{x} = log

(
Σ

{e}
ij{x}

μ
{e}
i{x}μ

{e}
j{x}

+ 1

)
. (10)

The mean and variance of the MFCCs of the sum are obtained
by taking the DCT, so that:

μ
{m}
{x} = Cμ

{c}
{x} (11)

and
Σ

{m}
{x} = CΣ

{c}
{x}C

T . (12)

Finally, the likelihood that state (i, k) produces observation
ot is the value of the normal distribution N (ot | μ

{m}
{x} ,Σ

{m}
{x} ),

where μ
{m}
{x} and Σ

{m}
{x} are calculated using Equations (3) to (12).

To reduce the computational complexity and increase numerical
robustness, we used only diagonal of the resulting covariance ma-
trix. In general this does not have significant effect on the re-
sults [3].

The method can be extended to n-component GMMs by cal-
culating the distribution for the mixture MFCCs individually for
each GMM-component pair of the target and noise, which are then
summed to yield an n2-component GMM of the mixture signal.
Similar formulas can also be derived for delta-MFCCs, but they
are not presented because of space limitation.

3. Decoding Algorithm
The objective of the decoding algorithm is to find state transition
paths of the target and noise so that the total likelihood, which is
the sum of the observation likelihoods and state transition prob-
abilities, is maximized. We assume that the HMMs of the target
and noise are not necessarily trained with material where the sig-
nal levels are equal to those in the mixture signal, so that the gains
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and g{n} also have to be estimated. Because of the complex-
f the model, finding the global optimum is not possible, and

efore we propose a greedy algorithm consisting of the follow-
steps:

1. Find the best state transition path and g{s} for the speech
alone. This is done by a one-dimensional optimization [8]
g{s}, where the Viterbi algorithm is used to estimate the
optimal state transition path for each tested value of g{s}.

2. Initialize g{n} = αg{s}, where the fixed scalar α was cho-
sen to have value 0.3.

3. Find the best state transition paths of the noise and speech
simultaneously. The estimation algorithm can be viewed as
an extension of the Viterbi algorithm, where the Markov
chains of speech and noise are synthesized into a single
HMM, as done by Gales and Young [3]. To reduce the
computational complexity, the speech chain is allowed to
use only those states which were used in its previously most
likely state transition path.

4. While keeping the state transition paths fixed, optimize g{s}

and g{n} using the Nelder-Mead [9] algorithm.

5. Find the best state transition paths for the noise and speech
simultaneously. To reduce the computational complexity,
the noise chain is allowed to use only those states which
were used in the previously most likely path.

6. While keeping the state transition paths fixed, optimize g{s}

and g{n} using the Nelder-Mead algorithm.

steps 3-6 are repeated until the likelihood of the model does
increase. For e.g. 150 observations and 8500 states for differ-
HMMs in both the speech and noise chains the algorithm takes
uple of iterations to converge, which takes several minutes on
2 GHz PC when implemented in Matlab.

4. Synthesis
allow post-processing and quality evaluation by listening, a
hod for synthesizing the speech and noise signals separately
also developed. The synthesis is done by filtering the mixture
al by a time-varying Wiener filter, which is designed using the
gies predicted by the target and noise chains.
For each frame the filter is designed as follows. Let use denote
state of the most likely state transition path in frame t by in-
s (i, k). First, the mean and covariance of the GMMs of speech
i and noise state k of the original GMMs are used to calcu-

the mean energy vectors μ
{e}
{s} and μ

{e}
{n} using Equations (3)

).
The power response Wi of the Wiener filter for the speech at
-frequency i is given as

W
{s}
i =

g{s}μ
{e}
i{s}

g{s}μ
{e}
i{s} + g{n}μ

{e}
i{n}

(13)

the Wiener filter for the noise as 1 − W
{s}
i . The filtering can

mplemented by taking the discrete Fourier transform (DFT)
he frame t, multiplying each bin of the resulting spectrum by
square root of the power response of the Wiener filter at cor-
onding mel-band i, taking the inverse DFT, and combining
cent frames using overlap-add. The method produces speech
als where the noise is significantly suppressed, and no signifi-
artefacts are introduced on the speech. Audio demonstrations

available at www.cs.tut.fi/˜tuomasv.



5. Simulations
The system was tested using the material of the speech separation
challenge.1 The acoustic material was drawn from the GRID cor-
pus [10] consisting of six-word sentences where the total number
of different words is 52, spoken by 34 different speakers. In each
test signal, two speakers were mixed at relative levels ranging from
-9 dB to 6 dB, the number of signals per each mixing level being
600. The target of the challenge is to recognize a letter and a digit
spoken by the speaker saying the word “white”. The identities or
the relative levels of the speakers were not used in the recognition.

5.1. Training

Speaker-specific HMMs were trained using similar sentences spo-
ken in isolation. Annotations where the word-level transcription
and the acoustic signal were aligned [10] were used to segment the
signals into words. Twenty-four MFCCs were calculated within
30 ms windows with 50% overlap, and a HMM per each word per
each speaker was trained using the Baum-Welch algorithm. The
number of states per word was two times the number of phonemes,
resulting in between 4 and 10 states per word. To minimize the
computational complexity, we used single-component GMMs to
model the MFCC distributions.

Sentence-level HMMs were built by concatenating the word
HMMs. Since the speaker identities were not known, the final
HMM for the speech was obtained by putting the sentence-level
HMMs of each speaker in parallel. The noise signals in the simula-
tions were drawn from the same database as the speech, and there-
fore the noise HMM was exactly the same as the speech HMM.

5.2. Recognition

The state transition paths for the speech and noise were determined
using the algorithm described in Section 3, and the words spoken
by both speakers were inferred from the paths. The speaker who
was recognized to say the word “white” was regarded as the target
speaker. If none or both speakers said “white”, the speaker with
larger gain was regarded as the target.

The word recognition accuracy was measured as the ratio of
the number of correctly recognized words per the total number of
words to be recognized. These were calculated separately for each
mixing level, and also separately for cases where the genders of the
talkers were the same or different. The challenge includes also test
cases where the speech and noise originate from the same speaker,
and the averages were calculated separately also for these cases.

5.3. Results

The average word recognition rates are shown in Table 1. The
method is able to produce relatively good performance even for
high noise levels, the average quality decreasing gradually as the
noise level increases. Mixtures where the speaker and noise iden-
tities were different were more easy to recognize. When the target
and noise speaker identities were the same, increasing the noise
level increased the average recognition rate, since the level differ-
ence aided to distinguish between the target and noise.

In these simulations the noise HMMs were trained using iso-
lated noise signals; estimating the noise HMM for real-world mix-
tures may not be as straightforward. When the speech HMM alone
was used to recognize clean speech signals, we obtained recogni-

1 www.dcs.shef.ac.uk/˜martin/SpeechSeparationChallenge.htm
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le 1: Average word recognition rates (%) for different speech-
oise ratios (SNR), and without noise (clean).

R Same speaker Same gender Diff. gender Avg.

ean 88 87 89 88
dB 63 86 82 76
dB 57 83 82 73
dB 44 76 78 65
dB 36 74 73 60
dB 45 71 71 61
dB 46 70 65 60

accuracy of 97%. The proposed factorial HMM method was
allowed to assign zero gains for the noise, decreasing its per-
ance in the clean condition.

6. Conclusions
proposed factorial HMM produces applicable results in the
gnition and separation of speech in the interference of an-
r speaker. The simulations show that separation of simulta-

us speech signals is possible using only the rough shape of
trum parameterized by MFCCs and temporal structure mod-
by HMMs. The applied method for calculating the MFCCs of

mixture signal is a good alternative for the widely-used max-
roximation in factorial HMMs.
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