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Abstract

This paper presents a method of evaluating singing skills that does
not require score information of the sung melody. This requires
an approach that is different from existing systems, such as those
currently used for Karaoke systems. Previous research on singing
evaluation has focused on analyzing the characteristics of singing
voice, but were not aimed at developing an automatic evaluation
method. The approach presented in this study uses pitch inter-
val accuracy and vibrato as acoustic features which are indepen-
dent from specific characteristics of the singer or melody. The ap-
proach was tested by a 2-class (good/poor) classification test with
600 song sequences, and achieved an average classification rate of
83.5%.
Index Terms: singing skill, automatic evaluation, unknown
melodies.

1. Introduction
The aim of this study is to explore a method of automatic evalua-
tion of singing skills without score information. Our interest lies
in identifying the criteria that human subjects use in judging the
quality of singing for unknown melodies, using acoustic features
which are independent from specific characteristics of the singer
or melody. Such evaluation systems can be useful tools for im-
proving singing skills, and also can be applied to broadening the
scope of music information retrieval and singing voice synthesis.

Previous work related to singing skills include those based on
a control model of fundamental frequency (F0) trajectory [1], gen-
eral characteristics [2, 3], as well as work on automatic discrimi-
nation of singing and speaking voices [4], and acoustic differences
between trained and untrained singers’ voices [5, 6, 7]. None of
these work have gone as far as presenting an automatic evaluation
method.

This paper presents a singing skill evaluation scheme based on
pitch interval accuracy and vibrato, which are regarded as features
that function independently from the individual characteristics of
singer or melody. To test the validity of these features, an experi-
ment of automatic evaluation of singing performance by a 2-class
classification (good/poor) was conducted.

The following sections describe our approach and the exper-
imental results of its evaluation. Section 2 presents discussion of
features. Section 3 describes the classification experiment and its
evaluation. Section 4 concludes the paper, with discussion on di-
rections for future work.
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an subjects can be seen to consistently evaluate the singing
s for unknown melodies [8]. This suggests that their evalua-
utilizes easily discernible features which are independent of
articular singer or melody. Within the scope of this paper, we
ose pitch interval accuracy and vibrato as such feature candi-
s.
The proposed features are numbered and shown in boxed
, like n . Throughout the paper, the singing samples are solo
l and are digital recordings of 16bit/16kHz/monaural.

Estimating Pitch Interval Accuracy

pitch interval accuracy is judged by the fitting of the F0 (fun-
ental frequency) trajectory to a semitone (100 cent) width grid
responding to equal temperament in the Western Music Tra-
n). Hereafter, pitch/frequency values will be referred to by
s, which are log-scale frequency values. The cent value fcent

equency fHz given as follows (middle C corresponds to 4800
).

fcent = 1200 log2

fHz

440 × 2
3
12−5

(1)

pose the semitone grid borders are set at multiples of 100.
n a particular pitch x has an offset of F (0 ≤ F < 100) from
earest lower border. If F has a constant value throughout the
sequence, then the singing can be seen to have a good fitting

e semitone grid.
Let p(x; F ) be a Gaussian comb filter for pitch x and offset
efined as follows, where ωi is a weight factor (currently set to
nd σi (= 16 cent) is the standard deviation of the Gaussian
ibution.

p(x; F ) =

∞X
i=0

ωi√
2πσi

exp

j
− (x − F − 100i)2

2σ2
i

ff
(2)

g this as a filter function, the semitone stability Pg(F, t) at
t and width Tg is defined as follows, where FF0(t) denotes

F0 and PF0(t) denotes the F0 possibility at time t, which are
ated per 10 msec using the method of Goto et al. [9].

Pg(F, t) =

Z t

t−Tg

p(FF0(τ); F )PF0(τ)dτ (3)

If all the F0 values are quantized by units of 100 cent, Pg(F, t)
have a single sharp peak at grid frequency Fg . The sharpness
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of the Pg(F, t) distribution thus indicates the degree of deviation
of the singer from any semitone grid.

Figure 1 shows the calculation process and example results of
Pg(F, t). The top figure shows the original F0 trajectory. The sec-
ond figure shows the result of smoothing by an FIR lowpass filter
with 5 Hz cutoff frequency1, and then removing the silent sec-
tions. The purpose of lowpass filtering is to remove the F0 fluctua-
tions (overshoot, vibrato, and preparation) of the singing voice [1].
Pg(F, t) is calculated with a 200-sample (2sec) rectangular win-
dow shifted by 5 samples. The bottom left figures show example
fitting to grids with F = 19 and F = 78, which are cumulated as
Pg(F, t) values shown to the right.

Figure 2 shows examples of Pg(F, t) and its long-term aver-
age g(F ). When the singing is “good”, then Pg(F, t), and conse-
quently, its g(F ) always has a single sharp peak. So the sharpness
of g(F ) can be utilized as a measure of pitch interval accuracy. Its

second moment M (defined as follows) is used as feature 1 :

M =

Z Fg+50

Fg−50

(Fg − F )2 g(F )dF (4)

where Fg is the F value for maximum g(F ), i.e.:

Fg = argmax
F

g(F ) (5)

The second feature 2 is taken as the slope bg of the linear
regression line of function G(F ):

G(F ) =
g(Fg + F ) + g(Fg − F )

2
(6)

bg is obtained by minimizing

err2
g =

Z 50

0

(G(F ) − (ag + bgF ))2 dF (7)

over ag and bg .

2.2. Estimating Vibrato Sections

Vibrato (deliberate, periodic fluctuation of F0) is considered as
important singing technique, and so is incorporated within our
scheme. Our vibrato detection scheme imposes restrictions on vi-
brato parameters of rate (the number of vibrations per second) and
extent (the amplitude of vibration from an average pitch on the
vibrato section). Restrictions of rate and extent are based on pre-
vious research [2, 10], with the rate range set at 5–8 Hz and extent
range at 30–150 cent.

The basic idea is to detect vibrato by using short-term Fourier
transform (STFT). In our current implementation, an STFT with a
32-sample (320 msec) Hanning window is calculated by using the
Fast Fourier Transform (FFT). STFT is applied to ΔFF0(t), i.e.
the first order finite differential of FF0(t). The power spectrum
X(f, t) can be expected to have a sharp peak where f corresponds
to the vibrato rate. This is expressed by the power Ψv(t) and the
sharpness Sv(t) defined as:

Ψv(t) =

Z FH

FL

X̂(f, t)df (8)

Sv(t) =

Z FH

FL

˛̨̨
˛̨∂X̂(f, t)

∂f

˛̨̨
˛̨ df (9)

1We avoid unnatural smoothing by ignoring silence sections and leaps
of F0 transitions wider than a 300 cent threshold.
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Figure 1: Overview of calculation method of Pg(F, t).
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re 2: Examples of Pg(F, t) and its long-term average g(F ) in
/poor singing.

re (FL, FH) is the range of vibrato rate, and X̂(f, t) is
, t) normalized over f :

X̂(f, t) =
X(f, t)R
X(f, t)df

(10)

g these, the vibrato likeliness Pv(t) is defined as

Pv(t) = Sv(t)Ψv(t) (11)

A section is judged as a vibrato section when it has high values
v(t), and FF0(t) crosses its average value more than 5 times.
vibrato rate and extent are obtained by

1

rate
=

1

N
·

NX
n=1

Rn (12)

extent =
1

2N
·

NX
n=1

En (13)
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where Rn [sec] and En [cent] are illustrated in Figure 3. The total
length of the vibrato section is used as feature 3 .

The following two functions Pv1 and Pv2 are also used as fea-
tures 4 and 5 , since they take high values in the presence of
vibratos (Tv is the length of the analyzed signal).

Pv1 = max
0≤t≤Tv

(Pv(t)) (14)

Pv2 =
1

Tv

Z Tv

0

Pv(t)dt (15)

3. Classification Experiment

The proposed features 1 – 5 have been tested in 2-class classi-
fication (good/poor) experiments, using the results of a previous
rating experiment by human subjects [8].

3.1. Dataset

The song samples are taken from the AIST Humming Database
(AIST-HDB) [11]. The AIST-HDB contains singing voices of 100
subjects who sung melodies of 100 excerpts from 50 songs in the
RWC Music Database (Popular Music [12] and Music Genre [13]).

Table 1 shows the singing voice dataset used in the experi-
ment. Our automatic classification experiment used 600 samples
by 12 singers who sung 50 excerpts from either 25 Japanese or
English songs, after listening to each excerpt five times. The 12
singer subjects (ID’s in the “name” column) were selected by the
criteria of receiving a consistently high rating (“good”) or low rat-
ing (“poor”) in the rating experiment by human subjects, and all
their samples were marked good/poor accordingly (given in the
“class” column in the table).
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Table 1: Dataset for classification experiment.

the numbername class language gender
of samples

E004 good English female 50
E008 good English female 50
E017 good English male 50
E021 good English male 50
J002 good Japanese female 50
J054 good Japanese male 50
E001 poor English female 50
E002 poor English female 50
E013 poor English male 50
E023 poor English male 50
J014 poor Japanese female 50
J052 poor Japanese male 50

Experimental Setting

experiments with different evaluation criteria were conducted
three dataset settings (male, female, and male-female). In
case, the feature value space was classified using Support

or Machine (SVM) as the classifier. The two evaluation crite-
re 10-fold cross-validation and leave-one-out cross-validation.
10-fold cross-validation method uses 9/10 of the samples as
raining set and 1/10 as the test set in each trial. The leave-one-
cross-validation, in our context, evaluates one sample as test
, and uses the rest as training data (excluding those with the
e singer/melody as the test data).

Results and Discussion

e 2 and Table 3 show the classification rates, precision rates
recall rates of each class for the 10-fold and the leave-one-out
s-validation respectively. The classification rate (C), precision
(Pi) and the recall rate (Ri) are defined as follows, where i
tes the class of good (i = good) or poor (i = poor).

Pi =
samples correctly classified as classi

samples classified as classi

× 100 (16)

Ri =
samples correctly classified as classi

samples in classi

× 100 (17)

=
samples correctly classified

total number of samples
× 100 =

Rgood + Rpoor

2
(18)

The results for male and male-female datasets are similar in
criteria, while there is a significant drop of ratings in the

e-one-out criteria for the female dataset. The female dataset
has a slightly lower rating in the 10-fold criteria as well. The

on for this drop is yet unclear, although the overall agree-
t in the male-female dataset suggests that the proposed fea-
s are both effective, and also robust against individual differ-

of singer and/or melody.
The overall high values of Pgood and Rpoor suggest that the
sification is stringent towards judging as “good” (if judged as
, then it is likely to be “real good”).

Figure 5 shows the classification rate for singers from the
-female dataset. The results show that the classification of
samples have a relatively high number of errors. One reason



Table 2: Results of the 10-fold criteria.

Dataset C Pgood Rgood Ppoor Rpoor

male 87.7% 95.2% 79.3% 82.3% 96.0%
female 80.3% 91.7% 66.7% 73.8% 94.0%

male-female 83.3% 90.3% 74.7% 78.4% 92.0%

Table 3: Results of the leave-one-out criteria.

Dataset C Pgood Rgood Ppoor Rpoor

male 87.7% 93.8% 80.7% 70.8% 94.7%
female 71.7% 74.8% 65.3% 58.0% 78.0%

male-female 83.5% 87.6% 78.0% 70.3% 89.0%

is that even a good singer may occasionally fail to keep good pitch
intervals, as they were singing out from memory. Such cases in-
clude when the overall pitch undergoes a gradual drift (resulting in
bad ratings in 1 2 ), which to the human ear does not sound so
distorted.

Classification errors also arise from the vibrato features 3 –

5 . A “good” sample can be misclassified as poor when there
is no vibrato, or when the values surpass the range restriction of
vibrato parameters. On the other hand, poor singing which cannot
keep a stable F0 can be mistakenly judged as a vibrato, especially
resulting from relatively high values of 4 5 .

4. Conclusion
This paper proposed two acoustical features, pitch interval accu-
racy and vibrato, which are effective for evaluating singing skills
without score information. In addition to these features, we have
also investigated other features, such as the slope of long-term av-
erage spectrum (LTAS), the power within a frequency range of
singer’s formant, the variance of 16-order cepstral coefficients, the
ratio between the power of harmonic components and others, the
average of spectral centroid or spectral rolloff, and the standard
deviation of F0 or power. The performance of their combinations,
however, has not surpassed the performance of the two features
presented in this paper. In the future, we plan to investigate other
features relevant to different vocal aspects such as rhythm and vo-
cal quality.
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