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Abstract
Earlier studies have shown that degradation due to environmental
background noise is non-uniform across various phoneme classes
of speech. In this study, we present an improved formulation of sin-
gle channel constrained iterative speech enhancement (AutoLSP)
that follows a rover based paradigm. The new approach overcomes
some of the drawbacks observed earlier in the baseline AutoLSP
system. First, it eliminates the sensitivity to proper determina-
tion of the terminating iteration. Second, it employs a phone level
non-uniform enhancement approach which significantly improves
perceptual quality of the overall uterrance. Third, audible noise
components are suppressed by incorporating an auditory masked
threshold (AMT) framework. The proposed algorithm is evaluated
using Itakura-Saito (IS) objective quality measure over four noise
sources and two SNR levels. Comparative evaluations with other
baseline systems (AutoLSP, log-MMSE) reveal that the new algo-
rithm exhibits consistent quality improvement for each noise case
over all phoneme classes in the TIMIT corpus. Reduction in IS
distance over degraded speech is observed in the range of 35.09-
46.88%. The Rover scheme outperforms AutoLSP and log-MMSE
by 9.21% and 11.19 % respectively using IS scores.
Index Terms: Speech Enhancement, Rover AutoLSP, Vector
Quantization, Auditory Masked Threshold

1. Introduction
The objective of any speech enhancement algorithm is to improve
the quality and intelligibility of speech degraded in adverse noisy
environments. Many algorithms based on a mathematical frame-
work do not take into account improvement in quality of the pro-
cessed speech from a psychoacoustical sense. Any enhancement
scheme can be considered successful if it i) suppresses percep-
tual background noise and in addition ii) either preserves or en-
hances perceived speech quality. Although earlier enhancement
approaches such as spectral subtraction [4], and other statistical
model based approaches like iterative sequential maximum aposte-
riori (MAP) autoregressive parameter estimators [3] and short time
spectral amplitude minimum mean square error (STSA MMSE) es-
timators [5] have been successful in suppressing noise, they have
also introduced processing artifacts and musical noise. The effects
of these limitations can degrade the performance of signal process-
ing algorithms used for speech recognition or speaker identification
systems that are primarily built for clean speech inputs. Therefore,
it becomes imperative to minimize the impact of noise by building
front-end robust speech enhancement algorithms.

This work was funded by grants from CDC under contract no.
1541372, and by the University of Texas at Dallas under project EMMITT
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2. Baseline Enhancement Algorithm

is study, we concentrate on the constrained iterative speech
ncement method popularly known as AutoLSP. Originally for-
ted by Hansen and Clements, a detailed work on it is present
, 2]. Briefly, it belongs to a family of single channel speech
ncement schemes based on a two step iterative sequential max-

aposteriori (MAP) estimation of clean speech waveform
ll-pole autoregressive (AR) speech model parameters ( , gain
An order of 10 was considered for AR models used in this
. Two assumptions were made here. First, the unknown pa-
ters , and were assumed to be random with apriori
sian probability density functions. Next, noise in a given short
frame was assumed stationary with clean speech and noise

g statistically independent. A sub-optimal solution to the esti-
on problem was solved using a sequential two step MAP ap-
ch. In the first step, the AR parameters are obtained from the
ledge of clean speech estimate at the itera-
In the second step, a new clean speech estimate is ob-

d by applying a non-causal filter to . These two steps
teratively carried out until a terminating iteration is reached.
is summarized as follows:

Step 1: MAX to give (1)

Step 2: MAX to give (2)

utoLSP, between (1) and (2), constraints were applied to auto-
lation lags and line spectrum pairs such that the AR model is
e and possess more speech-like characteristics than the tradi-
l spectral subtraction or Lim-Oppenheim Wiener filtering [3]
me.

3. Algorithm Issues

e are certain drawbacks present in the baseline AutoLSP sys-
First, it is sensitive to the terminating iteration. The last itera-
which on average is the third or fourth iteration, is purely em-
al in nature as there is no specific convergence criterion to de-
ine the optimal terminating iteration for each utterance. While

utterances are best enhanced by the second iteration, there are
rs that need as many as seven iterations. It is also dependent on
ype of noise and the level of degradation. For example, speech
aded by highway noise needs fewer iterations (typically 2) than

that are degraded by additive white Gaussian noise (typically
7).

he second issue is that while noise suppression for high en-
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ergy sections (vowels) of speech is significant, it is sometimes
overly suppressed for low energy sections (fricatives, stops) at the
terminating iteration, resulting in the introduction of processing ar-
tifacts. These artifacts have a pronounced effect on the perceived
quality for the entire utterance. Obviously, the number of iterations
can be reduced to minimize the artifacts. However, this will leave
noise under suppressed for most high energy sections which does
not alleviate the problem.

Third, there is usually some level of audible residual noise in
the enhanced speech due to errors caused during estimation of the
model parameters and noise spectrum.

This paper addresses these issues in the following way. We in-
troduce a Rover based mechanism that exploits an inventory built
from different enhancement levels of the baseline system. Using a
decision directed approach, the best enhanced frames for different
phoneme classes are selected from this inventory and used for re-
construction of the enhanced speech. This removes the dependency
of iteration on noise type, noise level and phonetic structure. To fur-
ther improve the subjective intelligibility of speech, audible noise
components can be suppressed using AMT developed originally by
Tsoukalas et al. [7]. The remainder of the paper is outlined as fol-
lows. Sec.4 describes the decision directed approach of the Rover
mechanism and the AMT framework. Sec.5 summarizes the exper-
imental evaluations, and Sec.6 presents the conclusions.

4. Algorithm Formulation
4.1. Enhancement Step

A Rover inventory of enhanced frames is created aprior to the deci-
sion making step. The enhancement is implemented using the base-
line AutoLSP system that iteratively enhances the degraded speech
using a non-causal Wiener filtering technique. The Wiener filter
can be parameterized by the noise over suppression factor ( ) and
the exponent term ( ). These can be varied to effect different en-
hancement levels at each iteration ( ). The baseline system uses
only one set of parameters for 2-3 iterations. However, the Rover
system uses 6 iterations, , of all combinations of

and . Hence, for every degraded
utterance 24 different AutoLSP enhanced utterances are produced.
The Rover decision making scheme utilizes this space to
pick the best set of enhanced frames. The Wiener filter is repre-
sented by,

(3)

where is the apriori power spectrum estimate of speech at
the iteration and is the noise power spectrum estimate.

4.2. Codebook Construction

Since it is assumed that the gender of the speaker is known prior
to enhancement, vector quantized (VQ) gender based codebooks
are used to classify each short-time frame into one of eight broad
phoneme classes (vowels, semivowels, nasals, fricatives, affricates,
stops, closures, silence). Phoneme classification is critical in the
Rover scheme because it employs a set of class dependent search
constraints discussed in the next section. 600 TIMIT sentences
from the training set were used to prepare noisy codebooks for
the noise types and noise levels used in this study. Using a 30 ms
frame size with a 75 % overlap, each short time frame was param-
eterized using 10 dimensional linear predictor cepstral coefficients
(LPCC) and log gain coefficient derived from the AR model pa-
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ters ([10], pp.376, eq 6.44). The codebooks, of size 512, were
tructed using the LBG algorithm [11] and optimized in a min-

mean square error (MMSE) sense. The distance between the
ectors and codebook entries was defined using a cepstral pro-
n measure. This distance metric uses the property that noise
pted cepstral vectors are less sensitive to angle perturbation
s given by,

(4)

eme classification errors occured mostly due to silence regions
g misclassifed as closures on a single frame within a sequence
ames. The errors were corrected by considering the classifica-
of the leading and trailing frames.

Decision Making Step

. Itakura-Saito(IS) Inventory

mploy a decision directed approach using the IS distance met-
] because it bears a high correlation with the subjective quality
eech [9]. From an inventory of AutoLSP enhanced corpus of
IMIT sentences, the IS distances between clean and enhanced

ch, and degraded and enhanced speech ( ) are recorded per
eme class ( ) where vowel, semivowel, nasal, affricate,
tive, stop, closure, silence . Using this knowledge, the median
tandard deviation per phoneme class ( ) are determined.
e parameters are used in generating the bounds on the search
e described in the next section.

. Decision Directed Strategy

ffective decision directed strategy is critical to the reconstruc-
of the overall enhanced speech. The strategy essentially at-
ts to choose the best set of enhanced frames from the Rover
tory using the knowledge of IS distances ( ) obtained from

raining set. The degraded speech can be modeled as,

(5)

e y, x, n represent the degraded speech, clean speech and ad-
e noise respectively. Let , of size , denote
et of enhanced frames in the AutoLSP inventory for the input
aded speech y where is the number of frames per iteration,
s the number of iterations per Wiener filter and is the num-
f Wiener filters. Here, = 6 and = 4 (Sec.4.1) is used.
he degraded speech, the IS distances ( ) over is determined.
f frames ( ) over a particular filter and it-
on ( , ) belonging to a single phoneme class from time

are represented by,

(6)

the goal is to find such that the average is mini-

d over . Given this foundation, the following steps
rates the decision directed strategy:
sing VQ codebooks, find a broad phoneme class ( ) for the
sequence of frames in [ ].
aluate the IS distances,

over (7)

e is the enhanced speech in time [ ]. Set m = 1 to



choose the initial search space given in the next step.
3. Based on , choose a search space given by

(8)

Hence, the search space is bounded by those IS distances in the
IS inventory that lie between the upper and lower bounds
(Sec.4.3.1). Here, , represents the weights on the standard
deviation. A value of 0.1 is used for both , .
4. Based on and , the best iteration and filter

combination is the one that gives the maximum mean IS
distance for and minimum mean IS distance for .
This is given by the following equations:

(9)

(10)

5. Next, determine whether to continue searching or proceed for
reconstruction:

(a) If exists, choose for reconstrunction of en-
hanced speech and proceed to Step 1.

(b) Else, continue searching by increasing search space size. Set
m = m + 1 and go to Step 3.

We feel this strategy improves the performance for the following
reasons. First, selection during the first three searches are biased
for choosing frames at a maximum IS distance from the degraded
speech since frames with lower distances are expected to retain
more noise, whereas those closer to the upper bound are expected to
be more noise free. On not finding ( ) in , the search space
size is increased to accomodate more frames. However, if ,
then it is likely that the information in the noise free frames are lost
due to the presence of overwhelming amount of artifacts. Hence,
the selection procedure is reversed. Noisy frames near the lower
bound are chosen over noise free frames near the upper bound. The
core idea behind this has been in finding a trade-off between noise
and artifacts. Second, contiguous sequence of frames are selected
instead of individual frames over a given class of phoneme se-
quence. This is done in order to reduce artifacts and impose a level
of naturalness to allow a reasonable rate for the speech spectrum
to be allowed to change. However, selection of silence regions can
be broken into individual frames because limited spectral variations
are expected. Selection of silence frames is restricted to no more
than 3 contiguous frames at a time. Third, a broad class phoneme
level enhancement approach is employed since search spaces are
phoneme class dependent. Fig.1 depicts the initial search spaces for
vowels and stops degraded by flat communications channel noise at
5 dB.

4.4. Auditory Masked Threshold (AMT)

The basic idea behind psychoacoustic enhancement technique is to
suppress those spectral components that contribute to audible noise
to an extent that they just become inaudible. A widely used tech-
nique to estimate these components is the determination of the Au-
ditory Masked Threshold (AMT) [7] from the enhanced speech. In
the proposed framework, an improved technique [8] is incorporated
to estimate the AMT (for the case of normal hearing listeners only)
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re 1: Initial (m=1) search space (within the vertical lines) for
owels and (b) stops. X-axis: IS(degraded,enhanced). Y-axis:
ean,enhanced).

the Equivalent Rectangular Bandwidth (ERB). The ERB rep-
ts an auditory filterbank model. The steps for calculating the
are :

. Calculate the total energy in each bandpass auditory filter
(ERB).

. Compute the excitation pattern ( ) by summing up the
power of each signal component with the filter weighting
function that is given by the ROEX(p) model, which is de-
scribed as, (11)

where W is the filter shape, p and g are filter parameters.
The normalized distance of the signal component ( ) from
the center frequency ( ) of the bandpass filter involved is
described as

(12)

. Compare the excitation pattern with the absolute threshold
of hearing (ATH) to estimate the AMT

(13)

5. Results
t of 192 TIMIT test sentences consisting of over 70000 frames
used for objective evaluations using four noise types - flat com-
ications channel noise (FLN), sun cooling fan noise (SUN), in-
le wind noise (BL4), large crowd noise (LCR) - and at two
levels (0, 5dB). Itakura-Saito distance was used as the objec-

measure to evaluate the results. Fig.2 shows a comparison of
eduction in IS distances of Rover AutoLSP, AutoLSP and log-
SE enhancement schemes. With the exception of BL4 noise at
, the Rover scheme consistently exhibited lower IS measures
AutoLSP and log-MMSE over all noise types and SNR levels.
average relative improvement in performance over AutoLSP
log-MMSE for all cases considered in this study was 9.21 %
1.19 % respectively. Across noise types, the highest percent-
eduction in IS distance was observed for FLN noise (48.62%
B) and the lowest for BL4 noise (25.04%). This is not an
aly since the levels of degradation at the same SNR (0dB)

the lowest for BL4 (IS = 2.24) compared to other noise sources
FLN, IS = 4.21).

eduction in IS measure was compared across all phoneme
es listed in TIMIT. Fig.3 shows the results for flat commu-
ions channel noise at 5dB. For each phoneme class, the Rover
me always performed better than the baseline systems. How-

the performance was only marginally better than AutoLSP
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Figure 2: IS measures across FLN, SUN, BL4, LCR noise types at
0dB and 5dB levels for different enhancement schemes
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Figure 3: IS measures across phoneme classes at FLN 5dB for dif-
ferent enhancement schemes

for affricates, fricatives and stops. Another test on Rover AutoLSP
was carried out where clean speech (”Swing your arms as high as
you can”) was used to estimate the best Wiener filter and itera-
tion ( ) for every sequence of frames per phoneme class fol-
lowed by an evaluation of the mean IS distance. This was compared
with the IS distances obtained from the decision directed approach.
We noted an average IS difference of 0.0839 for vowels, 0.0784
for semivowels, 0.3713 for nasals, 0.5535 for fricatives, 0.6314 for
stops, 1.1519 for closures and 1.3957 for silence sections.

Fig. 4 reports the frame-by-frame IS measure for the degraded
speech (”Don’t carry an oily rag like that”), AutoLSP enhanced
speech and Rover AutoLSP enhanced speech. Although the mean
IS measure for Rover AutoLSP is lower than AutoLSP, sharp peaks
are observed which are possibly the result of codebook phoneme
class misclassification or due to a wrong decision in the decision di-
rected strategy. These peaks do not degrade the overall perceptual
quality of the enhanced speech since there is usually a reduction
in the standard deviation of IS measure suggesting uniform levels
of improved quality across the entire utterance. Enhancing further
using AMT technique on Rover AutoLSP can siginificantly reduce
residual audible noise. Since the IS distance is not a suitable metric
to gauge the performance of perceptual based AMT enhancements,
we are in the process of carrying out formal subjective listener tests
such as those reported in [8]. Most of the computational resource
required for the algorithm was used in the preparation the noisy
codebooks and IS distance inventories from the trained set. This is
not a limitation since these can be prepared offline. However during
run-time, Rover search and VQ classification involves moderate to
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complexity depending on the size of the Rover inventory gen-
d per degraded test utterance.

6. Conclusions
is paper, a Rover based scheme was proposed as an improve-
t over the baseline AutoLSP system that uses a decision di-
d approach to select the best set of enhanced frame sequences
an inventory consisting of speech at different levels of en-

ement. Broad class phone classification was performed using
r quantized codebooks. This approach overcomes some of the

tcomings of the AutoLSP system. It removes the dependency
e terminating iteration and employs phoneme class dependent
ncement. Objective quality evaluations were carried out for
different noise types at two SNR levels. It was shown that
r AutoLSP consistently improved performace over AutoLSP
og-MMSE enhancement algorithms. The new scheme can be
as a front-end system for non real-time applications.

7. References
J.H.L.Hansen,M.A.Clements,”Constrained iterative speech enhancement with
application to speech recognition,” IEEE Trans. Sig Proc.,pp. 795-805, Apr
1991.

J.H.L.Hansen,L.M.Arslan,”Robust feature-estimation and objective quality as-
sessment for noisy speech recognition using the credit card corpus,” IEEE Trans.
Speech & Audio Proc., pp.169-184, May 1995.

J.S.Lim,A.V.Oppenheim,”All Pole Modeling of Degraded Speech,” IEEE ASSP,
pp.197-210, Jun 1978.

S.F.Boll,”Suppression of acoustic noise in speech using spectral subtraction,”
IEEE ASSP, pp.113-120, Apr 1979.

Y.Ephraim,D.Malah,”Speech enhancement using a minimum mean-square error
short-time spectral amplitude estimator,” IEEE ASSP, pp. 1109-1121, 1984.

Y.Ephraim,”Speech enhancementusing a minimum mean square logspectral am-
plitude estimator”, IEEE ASSP, pp 443-445, Apr 1985.

D.E.Tsoukalas,J.N.Mourjoupoulos,G.Kokkinakis,”Speech enhancement based
on audible noise suppression,” IEEE Trans. Speech & Audio Proc., pp.497-514,
Nov 1997.

A.Natarajan,J.H.L.Hansen,K.H.Arehart,J.Rossi-Katz, ”Perceptual Based
Speech Enhancement for Normal-Hearing & Hearing-Impaired Individuals,”
pp.1425-1428, Eurospeech 2003

S.R.Quackenbush,T.P.Barnwell,M.A.Clements,”Objective Measures of Speech
Quality,” Prentice-Hall, NJ, 1988

J.Deller,J.H.L.Hansen,J.Proakis,Discrete Time Processing of Speech Signals,
Prentice-Hall Publishers, NY,2000

Y.Linde,A.Buzo,R.M.Gray,”An algorithm for vector quantizer design,” IEEE
Trans Comm, pp.84-95, Jan 1980.


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by John H.L. Hansen
	------------------------------

