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Abstract
This paper introduces a novel adaptive direction filtering al-

gorithm in the Vocal Joystick (VJ) setting that utilizes context in-
formation and applies real-time inference in a continuous space.
The VJ system using this algorithm is endowed with the ability to
produce movements in arbitrary directions and the ability to draw
smooth curves. This is in contrast to previous VJ settings whereby
vowel quality was used to determine mouse movement in only a
finite discrete set of directions [1].
Index Terms: computer interface, voice control, adaptive filtering

1. Introduction
As human-computer interaction becomes ubiquitous, the concept
of continuous interaction [2] increasingly impacts the way we in-
teract with everyday objects and appliances, and ultimately on
the way we live in the modern world. Many emerging technolo-
gies, including vision-based and haptic interfaces, require new de-
sign approaches that allow for a continuous exchange of informa-
tion between the user and the system at a high resolution, More-
over, many applications that utilize such interfaces, e.g. mouse and
robotic arm control, additionally require real-time reasoning in a
continuous space.

The Vocal Joystick (VJ), introduced in our earlier work [1],
is a voice-based assistive technology originally designed for indi-
viduals with motor impairments. Unlike standard ASR, our sys-
tem goes beyond the capabilities of sequences of discrete speech
sounds, and exploits continuous vocal characteristics such as pitch,
vowel quality, and loudness which are then mapped to continu-
ous control parameters. We have utilized this interface to con-
trol computer mouse movement using the following scheme [1]:
a mouse movement is triggered when vowel activity is detected,
and continues until the vowel activity stops. At each time frame,
the movement direction is determined by vowel quality, while
the step size is determined by loudness. Finally, a small set
of consonants are used to execute mouse clicks. Several video
demonstrations of this VJ mouse system are available online at
http://ssli.ee.washington.edu/vj.

One challenge faced by our earlier VJ systems is that a mouse
movement was constrained to be in a number of (four or eight)
principle directions. As shown in Figure 1, we categorized vowel
qualities and mapped them to a discrete set of directions. Al-
though we were using soft classification, which theoretically could
produce movements in arbitrary directions if given “interpolated”
vowels as input, in practice the chance of having such outputs is
very small due to the nature of the classifier (as will be explained
in the next section). Additionally, we have found that it can be
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gure 1: Mapping from vowels (in IPA symbols) to directions

cult for a user to articulate interpolated vowels in a continuous
precise manner. Therefore, tasks like drawing a smooth curve
beyond the ability of the early VJ system.

This paper introduces an adaptive filtering algorithm in the Vo-
Joystick setting that utilizes context information and applies
-time inference in a continuous space. The VJ system using
algorithm is endowed with the ability to produce movements

rbitrary directions and the ability to draw smooth curves. The
of the paper is organized as follows: Section 2 introduces the
ground and formulates the problem; Section 3 describes and
pares two early VJ systems. Section 4 presents in detail our
osed algorithm; and the last section discusses several qualita-
tests and provides comments.

2. Problem Formulation
he VJ mouse control system, we want to produce a 2-D mo-
vector vt = (Δx, Δy)T (relative movement) given a vowel
ulation ot at each time frame. Here we only focus on map-
vowel quality to the angle of the motion vector. In other

ds, we assume Δx2 + Δy2 = 1. (How to map loudness to the
of the motion vector has been investigated in [3].) There are

strategies for mapping the vowel space to a unit-motion-vector
e. The first strategy is regression. For example, we can char-
rize the vowel space by the first and second formants (or their
ivalent measures), and transform the formants to the X- and
oordinates of a unit motion vector. Though this strategy, theo-
ally, enables the mouse to move in arbitrary directions in a 2-D
e, it is practically difficult to design the transformation as the
eption of formants is often nonlinear. Also, it can be difficult
ome users to intentionally and precisely control the movement
ction by continuously, and sometimes independently, changing
first and second formants.

The second strategy, which we use in our system, is soft classi-
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fication. We categorize the vowel space and map each category to
a principle direction, as shown in Figure 1. Then, we have a clas-
sifier pt = g(ot) that produces a posterior probability vector pt

given acoustics ot as input. Finally a linear transform vt = f(pt)
maps the posterior probability vector pt to a unit motion vector vt.
The goal of the Vocal Joystick mouse control can be formulated as
follows: assuming a user’s intended unit motion vector at time t is
v̂t, we desire that

f(g(ot)) = v̂t (1)

Several stages in this process, however, can encounter errors
or constraints, posing potential challenges in VJ control. The first
possible error is due to human imprecision in articulation. As men-
tioned in the introduction, it is sometimes difficult for a user to
precisely make the vowel that will produce her intended motion
vector. An analogy is when a beginning violinist plays a note on
a violin, it is quite likely to be out of tune. Second, the vowel
classifier may not be accurate, leading to system errors in classifi-
cation. The analogous scenario is that the violin itself may be out
of tune. More importantly, there are inherent system constraints in
the classification process. Since g(·) is usually a nonlinear trans-
form, some values of g(ot) will be more likely to occur than oth-
ers given that ot is uniformly distributed. Consequently, the mouse
will be more likely to move along certain directions. Taking the vi-
olin analogy again, imagine we replace the violin with a piano, we
will then lose the ability to produce certain pitches and pitch vari-
ations because of the constraints imposed by the pitch-quantized
equal-tempered keyboard.

Our design goals for the VJ system are that it should maxi-
mally reduce these errors and constraints by considering the fol-
lowing factors: (1) producibility, the system should use easily-
producible vowels, reducing the effect of human imprecision; (2)
discriminability, the system should use distinct vowels, reduc-
ing the chance of system errors; (3) flexibility, the system should
provide enough degrees of freedom in direction control; (4) pre-
dictability, the system should work in a relatively intuitive way;
and (5) cognitive load, the system should try to minimize the user’s
cognitive load. There certainly exist tradeoffs between these fac-
tors — for example, to increase flexibility, we may want to increase
the number of vowel categories, as will be seen in the next section,
but this may sacrifice producibility, discriminability, and cognitive
load. The adaptive filtering algorithm we propose in Section 4
provides a way to balance these tradeoffs.

3. A Natural Control Strategy
A natural strategy associated with the soft classification scheme
is to choose a number of vowel categories, e.g. four or eight, and
map them to directions as in Figure 1. Specifically, we let g(·) be a
two-layer MLP classifier, which ideally will output posterior prob-
abilities of the categories if trained using the minimum relative en-
tropy objective [4]. We also apply a supervised speaker adaptation
algorithm for MLPs to improve classification accuracies [5, 6] 1.
Furthermore, to obtain the motion vector, vt = (Δx,Δy)T , we
define the linear transform function f(·) as follows:

Δx = fx(pt) = 〈pt, wx〉
Δy = fy(pt) = 〈pt, wy〉 (2)

where wx is w
(i)
x = cos 2πi

n
, and w

(i)
y = sin 2πi

n
; here n is the

number of vowel categories, and the vowel categories are indexed

1Compared with the results in [5, 6], the classification error rates have
been significantly reduced in a recent development.
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nterclockwise with respect to Figure 1, starting from / /.

We first chose to use four vowel categories at the corners of
vowel triangle, namely /æ/, / /, /u/ and /i/, to maximize dis-
inability. As suggested in the previous section, a significant
back of this system is its lack of flexibility. Due to the na-
MLP classifiers, the posterior probability of one category is
lly much higher than the others. This results in a system that
esses mouse movements only along four cardinal directions.
therefore call it a “4-way” system.

To increase flexibility, we developed an “8-way” system using
ight vowel categories, namely /æ/, /a/, / /, /o/, /u/, / /, /i/ and
The 8-way system relaxes the constraints imposed by the 4-
system to a great extent. For example, if we want to move the
or along the up-right direction, in the 4-way system we might

to do it in a zig-zag pattern by saying “/æ/-/ /” repetitively,
le in the 8-way system we can simply say “/a/”. The 8-way
em, however, is obviously less advantageous compared with
4-way system in terms of producibility and discriminability.
act, we found that many users have trouble producing certain
els, such as /a/ and / /. Even when a user can produce all eight
els, it is sometimes hard to distinguish them since they are less
rated in vowel space. Frame-level vowel classification experi-
ts showed that the 8-way system has a classification error rate
round 8% while that of the first system is only 1%.

The next question is, can we combine the advantages of both
ems? In other words, we desire a system that allows mouse
ements in more directions but using only four explicit vowel
gories. To this end, it is helpful to infer the user’s intended
ion vector by incorporating context information. For example,
n the user says “/æ/-/ /-/æ/-/ /-...” in a target acquisition task,
likely that he wants to move the mouse diagonally.

4. Online Adaptive Filtering
re has been research on plan recognition which aims to infer
plans of an intelligent agent from observations of the agent’s
ons [7]. The recent trend in approaching the plan recognition
lem is to first construct a dynamic Bayesian network (DBN)

plan execution and then apply inference on this model [8, 9].
odel the plan hierarchy, [9] adopts a model of abstract Markov

cies that enables an abstract policy to invoke more refined poli-
. In such techniques, however, user intent is usually modeled
finite state space, and inference is often achieved via sampling.
poses problems to the situation where user intent is best ex-

sed as a continuous variable.

We introduce an adaptive filter approach to infer intended val-
p̂t from noisy estimates pt, and then we replace pt with p̂t

quation (2) in an attempt to obtain the intended motion vec-
v̂t. The model we use is essentially a hierarchical DBN. The

is to predict the current p̂t by a “plan” variable, a continu-
version of the “abstract policy” used in [9], and then update p̂t

d on the current measurement. The system dynamics can be
eled in such a way that the standard Kalman filter algorithm
is directly applicable, so that p̂t can be exactly inferred in the
imum likelihood sense. This dynamic model is “adaptive” in
sense that the plan variable is updated on the fly.

Specifically, as shown in Figure 2, we model the dynamics of
system using two variables in parallel. Variable p̂t represents a
’s intent, and variable gt represents the plan, or the long-term
d of p̂t. In other words, p̂t can be considered a local goal and
global goal, both of which are not directly observable. We
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Figure 2: Bayesian network framework for user intent tracking

assume that p̂t can be predicted by gt−1 with certain deviation,
i.e. p̂t = gt−1 + ut, where ut is a multi-variate Gaussian with
covariance matrix Q(t) = E[utu

T
t ]. This deviation can be caused

by plan changes, human imprecision, system constraints (e.g. only
allowing mouse movements in certain directions) or the user’s in-
tentional adjustments to compensate for previous errors. On the
other hand, gt can be determined by applying a low-pass filter on
p̂t. The dynamics of p̂t and gt are thereby modeled linearly as
follows: »

gt+1

p̂t+1

–
=

»
a(t) (1 − a(t))
1 0

–
·

»
gt

p̂t

–
+

»
0
ut

–
(3)

Furthermore, pt is a measurement variable, representing the noisy
estimate of p̂t. Specifically pt = p̂t+vt, where deviation vt is due
to system errors or environmental noise. For simplicity, we assume
that vt is generated from a multi-variate Gaussian distribution with
covariance matrix R(t) = E[vtv

T
t ],

If we define zt = [gt, p̂t]
T and wt = [0, ut]

T , we get the
standard state-space model. The dynamic and observation models
hence become

zt+1 = A(t)zt + wt (4)

pt = Czt + vt (5)

where

A(t) =

»
a(t)I (1 − a(t))I

I 0

–
(6)

C =
ˆ
0 I

˜
(7)

with a(t) ∈ [0, 1] being a scalar. In this way, p̂t can be obtained
in the maximum likelihood sense using the standard Kalman filter
algorithm [10]. It is worth mentioning that we infer p̂t instead of
gt because p̂t does not have phase delay with respect to pt whereas
gt does, as will be illustrated by a simulation in the next section.

The choice of the model parameters is rather application-
specific. First, matrix A(t) decides how stable the plan variable
gt is. In the extreme case where a(t) = 1, g(t) becomes a con-
stant. In target acquisition tasks, the plan for each utterance is to
move the cursor along a certain fixed direction. In this case, we
can use a function a(t) monotonically increasing over time, e.g.
a(t) = 1 − c/(t + c), so that gt will converge to a constant as
time goes. Note that A(t) is always reset to its initial value once a
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Figure 4: Adaptive filtering simulation

se or a stop in articulation is detected. For steering tasks, how-
, the plan can change constantly. We thus let a(t) = α where
[0, 1] is empirically chosen to determine the smoothness of

plan.

The covariance matrix Q(t) adjusts the tradeoff between the
othness of the estimate trajectory and the loyalty to the mea-
ment trajectory. If the variance of ut is small, p̂t will con-
e to its long-term trend gt and the trajectory of the estimates
mes smooth; otherwise p̂t will be more loyal to the mea-
ments pt. This parameter also adjusts the tradeoff between
system’s automation degree and the system’s predictability to
ans. Increased automation management is not always desir-
since it yields increased unpredictability to humans, which

ains why “even perfect intent inference might not be good
ugh” [11]. Finally, the covariance matrix R(t) depends on the
sifier confusion matrix and the environmental noise condition,
of which can be estimated using principled approaches.

5. Experiments and Discussions
llustrate the behavior of the adaptive filter, we ran a simula-
for a uni-variate random process. The measurement pt =
π
10

t + vt, where vt ∼ N (0, 0.01). The black trajectory in
re 4 represents this noisy sinusoid function for t = 1 : 100.

ume that the values +1 and -1 represent two principle direc-
s, and that the oscillating pattern implies the user’s effort to
a direction in between, represented by the value 0. We hope
our model can aid the user to approach and stabilize in this de-

d direction. Here we let a(t) = 1− 1/t, E[utu
T
t ] = 0.1/t and

tu
T
t ] = 0.01. The estimated plan variable gt is depicted as the

trajectory, and p̂t is depicted as the red trajectory in Figure 4.
p̂t variable (the red), which is inferred by our algorithm, is
l to the pt (the black) at the beginning and approaches gt (the
) as time goes. This plot also illustrates that p̂t is synchronized
pt, while gt is not.

As a test using real-world applications, the authors used
4-way system, the 8-way system, and the 4-way system

anced by adaptive filtering to browse a website. The
engine uses a two-layer MLP classifier with 50 hidden
s and 7 frames of MFCC features as input. As can
seen in the video demonstration accompanying this paper
://ssli.ee.washington.edu/vj/icslp-submission/icslp.mov,

adaptive filter manifested more control flexibility while using
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only four vowels. Using this system, the user achieved fairly
stable movements along directions other than the four cardinal
ones by oscillating between two vowels. The video also shows the
case where the cursor path became a smooth curve when the user
transitioned from one vowel to another.

The curve-drawing capability of the adaptive filter is more pro-
nounced in a steering task. This involves using the VJ mouse to
steer along two different shapes, a circle and a square tilted by an
angle, shown as the blue paths in Figure 5. The circle had a radius
of 300 pixels on a 800×600 screen, and the square was rotated 30
degrees counterclockwise with each side approximately 532 pix-
els. The cursor always started at the leftmost part of each shape,
and its movement was constrained to be within a “tube”, with a
radius of 30 pixels, centered at the reference shape. The session
would fail once the cursor hit the wall of that tube. The users (again
the authors), though having experience with the early VJ system,
were relatively novice users of the adaptive filter. As shown in the
Figure 5, the 8-way system and the system with adaptive filtering
produced much smoother paths compared with the 4-way system,
but the adaptive filter approach achieved this by using only four
vowels. Furthermore, the task completion times were very similar
across all three systems.

We found in the steering tasks, however, that the adaptive fil-
ter enhanced flexibility at the cost of predictability. In other words,
the way the system works is not as intuitive as those using the natu-
ral control strategy; the smoothness of the curve is sometimes hard
to control. However, we believe the predictability can be signifi-
cantly increased if given more time to learn this system — analo-
gous once again to learning to play a violin, individuals with motor
impairments, moreover, are often quite motivated to learn novel
user interface technologies. Given the experience we had using all
three systems, we are encouraged by the prospect of beginning a
large-scale user study to thoroughly evaluate user preferences and
learnability of these control strategies. In addition, we will con-
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r using a different vocal parameter, such as pitch, to determine
smoothness parameters. The authors would like to thank Kel-
Kilanski for her work on the VJ vowel database.

6. References
J. Bilmes and et.al., “The Vocal Joystick,” in (to appear)
ICASSP, May 2006.

G. Faconti and M. Massink, “Continuity in human computer
interaction,” Tech. Rep., CHI Workshop, 2000.

J. Malkin, X. Li, and J. Bilmes, “Energy and loudness for
speed control in the Vocal Joystick,” in ASRU Workshop,
Nov 2005.

C. Bishop, Neural Networks for Pattern Recognition, Claren-
don Press, Oxford, 1995.

X. Li, J. Bilmes, and J. Malkin, “Maximum margin learn-
ing and adaptation of MLP classifers,” in Eurospeech’05,
September 2005.

X. Li and J. Bilmes, “Regularized adaptation of discrimina-
tive classifiers,” in (to appear) ICASSP, May 2006.

H. Kautz and J. F. Allen, “Generalized plan recognition,” in
AAAI, 1986, pp. 32–38.

D. Pynadath and M. Wellman, “Accounting for context in
plan recognition, with application to traffic monitoring,” in
Proc. Conf. on Uncertainty in Artificial Intelligence, 1995.

H. H. Bui, S. Venkatesh S, and G. West, “The recognition of
abstract Markov policies,” in AAAI, 2000, pp. 524–530.

M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory
and Practice, Prentice Hall, 1993.

H. B. Funk and C. A. Miller, “User acceptance and plan
recognition: Why even perfect intent inferencing might not
be good enough,” in AAAI Fall Symposium, 2001.
(a) User I (b) User II (c) User III

Figure 3: Steering Snapshots: (i) 4-way system; (ii) 8-way system; (iii) 4-way system with adaptive filtering


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Xiao Li
	Also by Jonathan Malkin
	Also by Jeff A. Bilmes
	Also by Richard Wright
	------------------------------

