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Abstract
This paper extends the within-class covariance normalization
(WCCN) technique described in [1, 2] for training generalized lin-
ear kernels. We describe a practical procedure for applying WCCN
to an SVM-based speaker recognition system where the input fea-
ture vectors reside in a high-dimensional space. Our approach in-
volves using principal component analysis (PCA) to split the orig-
inal feature space into two subspaces: a low-dimensional “PCA
space” and a high-dimensional “PCA-complement space.” After
performing WCCN in the PCA space, we concatenate the resulting
feature vectors with a weighted version of their PCA-complements.
When applied to a state-of-the-art MLLR-SVM speaker recogni-
tion system, this approach achieves improvements of up to 22% in
EER and 28% in minimum decision cost function (DCF) over our
previous baseline. We also achieve substantial improvements over
an MLLR-SVM system that performs WCCN in the PCA space but
discards the PCA-complement.
Index Terms: kernel machines, support vector machines, feature
normalization, generalized linear kernels, speaker recognition.

1. Introduction
In recent years, support vector machines (SVMs) have become
one of the most important and widely-used classification tech-
niques within the field of speaker recognition. Most top-performing
speaker recognition systems use output “scores” obtained from
SVM-based speaker models to arrive at a final decision for a given
speaker trial. As with every SVM-based classifier, these speaker
models are trained using some predefined kernel function k. Proper
selection of the kernel function can be critical to the success of an
SVM-based system, particularly in cases where the amount of avail-
able training data for either the impostor class or the target speaker
class is very limited (e.g. the 1-conversation training condition in
speaker recognition).

With some exceptions (e.g. the rank normalization technique
described in [3, 4]), most of the existing work on kernel selection
for speaker recognition has focused on generalized linear kernels—
that is, kernels of the form, k(x1,x2) = xT

1 Rx2, where R is a
positive semidefinite parameter matrix. Approaches for training R
include the technique described in [5], which essentially involves
setting R equal to C−1, where C is the covariance matrix of the
training data. A diagonal parameterization for R is derived in [6]
for count-based features (e.g. phone n-grams). These parame-
terizations have both yielded substantial improvements over other
kernels on a variety of speaker recognition tasks and feature sets.
Nonetheless, both parameterizations are somewhat limited by the
fact that they are unsupervised—that is, they do not take speaker
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ls into account when training R. This limitation is addressed,
ast partially, by Solomonoff et al. in [7] and in [8], where the
ors use speaker labels to identify orthonormal vectors or “di-
ions” in feature space that maximize task-relevant information
le minimizing noise. Solomonoff’s approach has been shown
e quite useful for filtering out channel noise and for perform-
feature reduction. However, the approach in [7, 8] does not
cribe any scheme for weighting the directions in feature space
are retained. Thus, this approach does not fully answer the

stion of how to train R for a generalized linear kernel.
In this paper, we expand on the within-class covariance nor-
ization (WCCN) technique for training generalized linear ker-
that was recently introduced in [1, 2]. The WCCN technique
cribes setting R equal to W−1, where W is the expected
in-class covariance matrix over all classes (i.e. speakers) in

training data. WCCN uses information about class labels from
training data to identify orthonormal directions in feature space
maximize task-relevant information. However, unlike other
niques in the literature, WCCN optimally weights each of these
ctions to minimize a particular upper bound on error rate [1, 2].
s, the WCCN approach can, in principle, harness whatever task-
vant information is contained in each of the “directions” of the
erlying feature space—even directions that are largely domi-
d by noise.
We describe a set of experiments where we combine WCCN
a version of the principal component analysis (PCA) technique
ribed in [9]. Our algorithm provides a practical approach for

lying WCCN to large feature sets, where inverting or simply
ating W is impractical for computational reasons. In experi-

ts on SRI’s latest MLLR-SVM speaker recognition system (i.e.
ure set), our combined WCCN approach achieves relative im-
ements of up to 22% in equal-error rate (EER) and 28% in
imum DCF below SRI’s previous baseline.
The paper is organized as follows: In section 2, we summarize
WCCN approach and discuss practical considerations for how
pply WCCN to large feature sets. In section 3, we describe
approach used in [9] for breaking feature vectors down into

and PCA-complement components. This is followed by sec-
4, where we describe the experimental procedure that we use

erform feature normalization and to train SVM-based speaker
els. Finally, in sections 5 and 6, we describe a set of experi-
ts, provide results, and end with a set of conclusions.

. Within-Class Covariance Normalization
concept of within-class covariance normalization (WCCN) for

training was recently introduced in [1] and then extended in
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[2]. To derive the WCCN approach, the authors first construct a set
of upper bounds on the rates of false positives and false negatives in
a linear classifier (i.e. a binary classifier that uses a linear or affine
decision boundary). Under various conditions, the problem of min-
imizing these upper bounds with respect to the parameters of the
linear classifier leads to a modified formulation of the hard-margin
support vector machine (SVM) [10, 11]. Given a generalized linear
kernel of the form, k(x1,x2) = xT

1 Rx2, where R is a positive
semidefinite parameter matrix, this modified SVM formulation im-
plicitly prescribes the parameterization, R = W−1, where W is
the expected within-class covariance matrix over all classes. We
can represent W mathematically as

W �
M∑

i=1

p(i) · Ci,

Ci � E (xi − x̄i)(xi − x̄i)T ∀i.

Here, xi represents a random draw from class i, M represents the
total number of classes, and x̄i represents the expected value of xi.
We use Ci and p(i) to represent the covariance matrix and the prior
probability of class i. (Note that in this paper, the term, “class” is
synonymous with “speaker.”) Given W, where W is full-rank,
we can implement a generalized linear kernel with R = W−1 by
using the following feature transformation, Φ:

Φ(x) � AT x. (1)

Here, A is defined as the Cholesky factorization of W−1:

AAT � W−1.

In practice, empirical estimates of W are typically quite noisy;
thus, a certain amount of smoothing is usually required to make
the WCCN approach work. In this paper, we use the following
smoothing model:

Ŵs � (1 − α) · Ŵ + α · I, α ∈ [0, 1]. (2)

Here, Ŵs represents a smoothed version of the empirical expected
within-class covariance matrix, Ŵ, and I represents an N × N
identity matrix where N is the dimensionality of the feature space.
The α parameter represents a tunable smoothing weight whose
value is between 0 and 1. It’s straightforward to show that in the
above model, the eigenvectors of Ŵs are constant with respect to
α. Thus, we can compute the WCCN feature transformation, Φ, in
(1) for any value of α without having to recompute the eigenvectors
of Ŵs.

2.1. WCCN for Large Feature Sets

In this paper, we examine the problem of how to apply WCCN to
large feature sets, where inverting or simply estimating Ŵ is im-
practical for computational reasons. For large feature sets, we can
use kernel principal component analysis (KPCA) to first reduce the
dimensionality of the feature space to a more manageable size be-
fore performing WCCN. One potential problem with this approach,
however, is that by filtering out various orthogonal vectors or “di-
rections” in feature space (i.e. by performing feature reduction),
we lose a significant amount of the information contained in the
original feature set. To avoid this problem, we use the PCA de-
composition described in [9], where the feature space is divided
into two sets: a set that represents the top N features obtained from
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orming PCA, where N is the number of training vectors (i.e.
CA set) and a PCA-complement set, which represents all of the

rmation contained in the original features but not in the PCA
Since all of the covariance information in the training data is

fined to the PCA set (the PCA-complement is 0 for all feature
ors in the training data but generally non-zero for feature vec-
outside of the training data), we can perform WCCN on the
set, which has reduced dimensionality, and then concatenate

esulting feature set with the PCA-complement. This procedure
scribed in the following sections.

. Kernel PCA and the PCA-Complement
section provides an overview of kernel PCA and also describes

PCA-complement approach used in [9]. We begin by defining
be a column matrix containing scaled, mean-centered versions
e feature vectors in the training set:

X �
√

1
N

· [(x1 − x̄), . . . , (xN − x̄)].

e xi represents the ith training vector, and x̄ represents the
age over all N training vectors. Given the above definition, we
represent Ĉ (i.e. the empirical covariance matrix of the data)
llows:

Ĉ = XXT ,

� UΣ2UT . (3)

e second line of the above equation, we define UΣ2UT to be
eigendecomposition of Ĉ. We can represent the corresponding
ndecomposition for XT X as follows:

XT X � VΣ2VT . (4)

e, we define V to be a column matrix containing the eigen-
ors of XT X and Σ2 to be a diagional matrix containing the
esponding eigenvalues. If XT X is full-rank, then we can com-
(3) with (4) to arrive at the following expression for U, the

nvector matrix of Ĉ:

U = XVΣ−1. (5)

columns of U represent the set of all eigenvectors of Ĉ whose
esponding eigenvalue is non-zero. Thus, we can perform PCA
rojecting the input feature vectors onto the column vectors of

This leads to the following feature transformation, ΦPCA:

ΦPCA(x) � UT x,

= Σ−1VT XT x. (6)

transformation reduces the dimensionality of the underlying
ure space down to N features, where N is the size of the training

Since the input feature vectors appear in the form of inner
ucts, which can be replaced with kernel functions, this feature

sformation is referred to as kernel PCA [12].
We use ΦPCA to represent the feature transformation for the
-complement, which is defined as follows:

ΦPCA(x) � (I − UUT )x. (7)

PCA-complement represents the portion of the original feature
e that is orthogonal to the training set. Thus, ΦPCA(x) = 0
a null vector) for all x in the training set.



4. Experimental Procedure
The experiments in this paper compare two different feature nor-
malizations: WCCN and standard covariance normalization (CN),
where R = Ĉ−1

s . (Here, Ĉs represents a smoothed version of
Ĉ, the empirical covariance matrix of the training data.) Since
Φ(x)PCA = 0 for all x in the training set, we have no way of
coming up with a meaningful estimate of the covariance matrix for
the PCA-complement (any empirical covariance estimate will sim-
ply be 0). Thus, WCCN and standard CN are only applied to the
PCA feature set. The normalized PCA features are then concate-
nated with a weighted version of the PCA-complement to form the
final feature representation.

Our experimental procedure is summarized below:

1. Perform per-feature within-class variance normalization on
all of the input features (i.e. scale all features to have an
average within-class variance of one on the training data).
The resulting features provide us with a first-cut approxi-
mation of what we would obtain by performing full WCCN
on the original feature set. This is simply a preprocessing
step for performing KPCA, which is not invariant to scaling
operations on the input features. Note that the smoothing
model of (2) is also not invariant to scaling operations.

2. Compute ΦPCA(x) for every feature vector x in the training
and test sets. This gives us the PCA feature set.

3. Compute ΦPCA(x) for every feature vector x in the training
and test sets. This gives us the PCA-complement feature set.

4. Perform either within-class covariance normalization
(WCCN) or standard covariance normalization (CN) on the
PCA feature set. Both normalizations can be represented in
the form of a matrix multiplication. We use the smoothing
model shown in equation (2) for both WCCN and standard
CN. The smoothing parameter α is tuned on a set of held-out
cross-validation data.

5. Concatenate a scaled version of the normalized PCA feature
set with a scaled version of the PCA-complement feature set
to arrive at our final feature representation, Φ:

Φ(x) �
[

(1 − σ) · AT ΦPCA(x)
σ · ΦPCA(x)

]
, σ ∈ [0, 1]. (8)

Here, AT represents the transformation matrix derived in
step 4 to perform either WCCN or standard CN on the PCA
feature set. Thus, AT ΦPCA(x) represents the normalized
PCA component of feature vector x. We use the parameter
σ to control the relative weight applied to the two feature
sets (i.e. the PCA set and the PCA-complement set). This
parameter is tuned on a held-out cross-validation set.

6. Use the final feature representation to train and test SVM-
based speaker models.

Given a standard linear kernel, k(x1,x2) = xT
1 x2, it’s fairly

straightforward to show that when σ = 0.5 and A = I (i.e. A is
the idenitity matrix), then the following equality holds for any pair
of input feature vectors, x1 and x2:

k(x1,x2) = 4 · k(Φ(x1), Φ(x2)). (9)

The equality in (9) follows directly from the definitions for Φ,
ΦPCA, and ΦPCA in equations (8), (6), and (7). Equation (9)

show
tran
kern
the
info
purp

In th
our
sect

5.1.

We
to c
syst
spee
tota
tors
els.
regr
sula
side
used
as th
feat
app
our
follo
[3]
TNO
with

5.2.

Exp
ditio
200
scri
divi
∼36
∼58
alte
and
tune
the t
resu
deta

5.3.

We
each
usin
out
Swi
Fish

1473

INTERSPEECH 2006 - ICSLP
s that when σ = 0.5 and A = I, then applying the feature
sformation, Φ, to the input feature vectors does not affect the
el function k beyond a scaling factor. Thus, by concatenating

PCA set with the PCA-complement set, we preserve all of the
rmation contained in the original feature set, at least for the
ose of computing linear kernels.

5. Experiments and Results

is section, we describe the tasks, datasets, and features used in
experiments. The results of these experiments are discussed in
ion 5.4.

MLLR-SVM System

used an MLLR-SVM system similar to the one described in [4]
ompute feature vectors for our experiments. The MLLR-SVM
em uses speaker adaptation transforms from SRI’s DECIPHER
ch recognition system as features for speaker recognition. A

l of 8 affine transforms are used to map the Gaussian mean vec-
from speaker-independent to speaker-dependent speech mod-
The transforms are estimated using maximum-likelihood linear
ession (MLLR), and can be viewed as a text-independent encap-
tion of the speaker’s acoustic properties. For every conversation
, we compute a total of 24960 transform coefficients, which are
as features. Note that this system uses twice as many features
e original MLLR-SVM system described in [3, 1]. The input

ure vectors are identical to those used in [4]. However, besides
lying the feature transformation Φ to the input feature vectors,
system differs from the MLLR-SVM system used in [4] in the
wing ways: 1) our system does not apply rank normalization

to the input feature vectors and 2) our system does not apply
RM [13] to the output SVM scores. We have yet to experiment
applying these normalizations to a system that uses WCCN.

Task and Data

eriments were performed on the 1-conversation training con-
n of two NIST-defined tasks: SRE-2004 and a subset of SRE-

3. Note that these tasks and datasets are the same as those de-
bed in previous reports (see [4, 1]). The SRE-2003 subset was
ded into two splits of disjoint speaker sets, both comprised of
00 conversation sides and ∼300 speakers. Each split comprises
0 speaker models and ∼9800 speaker trials. These splits were

rnately used for training (i.e. computing covariance estimates
feature transformations) and for testing. We used SRE-2004 to
α and σ for testing on SRE-2003, and vice-versa. To simplify
uning process, α was optimized for the case where σ = 0. The
lting α parameter was then held fixed while tuning σ. Further
ils on the tasks and datasets can be found in [4].

SVM Training

used SVMlight [14] to train SVM-based speaker models for
task. Each speaker model was trained with a linear kernel

g the default value of the SVM hyperparameter C. A held-
dataset composed of 425 conversation sides taken from the
tchboard-2 corpus and 1128 conversation sides taken from the
er corpus was used as negative examples for the SVM training.



5.4. Results

Table 1 shows results on the MLLR-SVM system for various fea-
ture representations. Here, the labels “WCCN” and “CN” denote
within-class covariance normalization and standard covariance nor-
malization, where α is tuned on the cross-validation set. The σ
parameter is optimized on the cross-validation set for systems that
are labeled “PCA.” For systems that are not labeled “PCA,” σ is
set equal to zero (i.e. the PCA-complement is omitted from the
final feature representation). The “baseline” label represents the
MLLR-SVM system without any feature normalization.

As shown in table 1, the WCCN approach provides improve-
ments that are quite substantial, at least in most cases, over stan-
dard CN (see the “improvement over PCA+CN+PCA” results).
It’s worth noting that the improvements obtained over the baseline
are significantly larger on SRE-2003 than on SRE-2004. However,
this is to be expected, since the feature transformations and normal-
izations used in these experiments were trained only on held-out
SRE-2003 data, which represents a different set of channel and
recording conditions than SRE-2004.

We note that the “PCA,” “PCA+CN,” and “PCA+WCCN” re-
sults are all obtained from PCA feature sets whose dimensionality
is reduced to ∼3600 (i.e. the number of training examples in each
split of the SRE-2003 subset). In spite of this reduced dimen-
sionality, the “PCA+WCCN” system significantly outperforms the
“baseline” system, where each feature vector is composed of 24960
features.

Table 1 also shows that adding the PCA-complement to the
PCA feature set leads to significant relative reductions in error rate
(see the “improvement over PCA+WCCN” results). To the best
of our knowledge, the results for the “PCA+WCCN+PCA” system
are the best recorded so far in the literature for an MLLR-SVM
system. Even without using rank normalization or TNORM—two
techniques used in [4] which should presumably lead to reductions
in error rate (we have not yet integrated these normalizations into
our system)—our system outperforms the MLLR-SVM system in
[4] by at least 15% on the SRE-2003 subset and by a smaller, but still
significant margin on SRE-2004. These experiments point to the
utility of using WCCN in conjunction with the PCA-complement
when training SVM-based speaker models.

6. Conclusions

We describe a practical procedure for applying within-class covari-
ance normalization (WCCN) to an MLLR-SVM speaker recogni-
tion system where the feature vectors reside in a high-dimensional
space. When applied to a state-of-the-art MLLR-SVM speaker
recognition system, this approach achieves improvements of up
to 22% in EER and 28% in minimum decision cost function
(DCF) over our previous baseline. We also achieve substantial
improvements over an MLLR-SVM system that performs WCCN
on the PCA set but discards the PCA-complement. These results
point to the utility of using WCCN in conjunction with the PCA-
complement when training SVM-based speaker models.
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SRE-03 subset SRE-04
Φ EER% DCF EER% DCF

baseline 2.91 0.117 5.97 0.282
PCA 3.89 0.158 7.35 0.318

PCA+CN 2.92 0.123 6.43 0.289
PCA+WCCN 2.30 0.108 5.52 0.260

PCA+PCA 2.91 0.117 5.97 0.282
PCA+CN+PCA 2.33 0.092 5.87 0.266
CA+WCCN

+PCA 2.08 0.091 5.27 0.247

provement over
baseline 28.5% 22.2% 11.7% 12.4%

provement over
PCA+WCCN 9.6% 15.7% 4.5% 5.0%

provement over
PCA+CN+PCA 10.7% 1.1% 10.2% 7.1%

le 1: EERs and minimum DCFs for various feature transforma-

/normalizations on the MLLR-SVM system. Here, “baseline” represents the

LLR-SVM system without any feature normalization. The labels “WCCN” and

” denote within-class covariance normalization and standard covariance normal-

n, and “PCA” denotes a system that uses the PCA-complement with σ optimized

e cross-validation set. The “improvement” entries represent the relative improve-

of PCA+WCCN+PCA over the given system.
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