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Abstract
The relationship between an objective measure of speech
quality (PESQ) and the recognition rate of a given speech 
recognition system was already investigated by other 
researchers. In this paper, we present a further investigation on
such a relationship. In our research, the speech recognition tests 
were performed on a wider class of signals and SNR. The
experimental setup as well as the speech recognition systems
now evaluated were based on the directions given by the Aurora
project. Moreover, a new parametric modeling approach for the
PESQ-MOS versus speech recognition rate curve, based on the
logistic function, is proposed. This new modeling allows some 
meaningful interpretations of the parameters of the logistic 
function in terms of system robustness, and permits to make 
inferences in the regions outside the experimental measures.
Furthermore, the PESQ versus SNR characteristic was used to 
group types of noise, leading to a much better fit of the logistic
function over the data points. 
Index Terms: speech recognition, speech quality assessment

1. Introduction
Telephony speech signals are characterized by a great 
variability in the level and type of background noise, especially
when arising from cell phones. In general, Automatic Speech
Recognition (ASR) systems have a good performance in silent 
environments, but their performance used to drops dramatically
in noisy environments. When these systems are used in call
center applications, as an example, it would be useful if there 
was some kind of objective speech quality measure that could 
be able to predict the speech recognition rate of a given ASR 
system, without spending time and money to carry out extensive
and expensive speech recognition tests. 

Signal to noise ratio is the most common measure of a 
signal’s quality, but normally it is not a good indicator of its 
perceived quality [1]. On the other hand, tests conducted by Sun
and colleagues [2] suggest that the PESQ-MOS score, obtained 
by the Perceptual Evaluation of Speech Quality (PESQ)
algorithm [3] is a better indicative for this purpose. In their 
work, they proposed an empirical 4th order polynomial fitting 
curve for modeling the relationship between the PESQ-MOS 
scores and the speech recognition rate, for some additive and 
convolutional noise scenarios. 

This paper presents a further investigation of such a 
relationship between PESQ-MOS scores and the ASR rate, with 
three main contributions over Sun’s et al. work [2]: 1) tests were
performed on Aurora1 database, with a wider class of signals
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 SNR, providing a more robust evaluation; 2) a new
ametric approach for the PESQ x recognition rate curve,
ed on the logistic function, is proposed, which allows some 
aningful interpretations of the logistic function parameters in
ms of the ASR system robustness; 3) the PESQ x SNR curve 
s used to group  different types of noise that lead to similar 
R performance. These and other related issues are further 
cussed in the next sections of this article. 

2. PESQ
en characterizing the perceptual quality of a speech signal, 
Mean Opinion Score (MOS) is usually considered the most 

iable test that can be performed. However, it is not practical
most cases due to the great human effort necessary to carry it 
. The PESQ algorithm [3] was selected by the ITU to be a
lacement of the subjective MOS evaluation in some well-
ined situations.
The objective PESQ-MOS scores have a high correlation 

ore than 93%) with the subjective MOS scores under a wide 
ge of conditions, and can be used to perform assessment of 
ferent codecs and end-to-end telecommunication networks. It 
es two signals, a clean one and a noisy version of it, and 
pares both using perceptual models for the perceived pitch 

rk scale) and intensity (subjective loudness). There is a small 
le shift between the MOS and the PESQ-MOS range: the
S scale varies from 1 (worst quality) to 5 (best quality),

ereas the PESQ scale range from –0.5 to 4.5. 

3. PESQ x Recognition Rate 
Parametric Modeling 

[2], Sun et al. have tried to fit the PESQ x recognition rate 
a points by means of a 4th-order polynomial curve. But in our 
eriments, as we will show in the next sections, it was
erved that the PESQ x recognition rate curve resembles the
pe of a logistic function. Based on this similarity, we have 
posed a parametric modeling of this curve using the logistic 
ction. This new approach leads to some interesting 

erpretations, which never could be achieved by a non 
ametric polynomial curve, as shown next.
We used the logistic function with three free parameters: a,

nd c, defined according to (1): 

100
1
1)( axb

ax

e
ecxf  (1) 

Now, parameters a, b and c can be interpreted as follows: 
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3.1. Parameter a
This parameter controls the slope of the curve, as shown in 
Figure 1. It can be viewed as the “sensitivity of the system to
PESQ variation”. Observe that the higher is this parameter, the
steepest is the curve.
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Figure 1 Effects of parameter a in the logistic curve.

3.2. Parameter b
Observing Figure 2, it can be easily noted that parameter b
controls the horizontal offset of the curve: as b increases, the 
curve is shifted to the right. Analyzing this curve from right to 
left, it can be seem that, for fixed a and c, the lower is b, the 
better (in terms of robustness) is the ASR system, because it can
keep high recognition rates for lower values of PESQ-MOS. 

3.3. Parameter c
Parameter c controls the range of the curve in the vertical 
direction: as c increases, the recognition rate range increases
too. This effect has an interesting interpretation: as the logistic
function (1) tends monotonically to 1 as x tends to infinity, a
value of c = c0 will cause the curve to tend to c0 as x tends to
infinite. In our approach, x is the PESQ-MOS score, so when x
is 4.5, it corresponds to the clean signal. Therefore, c0 can be 
interpreted as the average recognition rate in clean conditions.

3.4. Merit index
We have also proposed an original merit index to rank a given 
speech recognition system regarding its robustness and
recognition rate performance. In order to calculate the proposed 
merit index, it is necessary to establish an application-specific 
PESQ-MOS range. In next figures, all merit indexes were
calculated over the 1.5 to 3.5 PESQ-MOS range. The merit
index, which is a real number between 0.0 and 1.0, can thus be
easily obtained by simple calculation of the logistic function 
mean value, using (1), except the factor of 100, with x sampled
at the 0.5 distance points over the PESQ-MOS range. For 
example, in our above proposed PESQ-MOS range, x is 
sampled at the points xi = {1.5, 2.0, 2.5, 3.0, 3.5}. 
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Figure 2 Effects of b parameter in the logistic curve.
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4. Experimental Setup 
e experimental tools used in this research consisted of a 
ndardized speech recognition system, built using HTK [4]
r the back-end part of the system), and the Aurora1 database 
. The whole word (ten digits plus oh and two “silent”
dels) HMM configurations used for the HTK back-end setup
lowed the detailed directions set for the first part of the 
rora project [5], which are, summarizing, the following ones: 
states per word, simple left-to-right models (without skips 
r states), mixtu
ariance matrix.
Although well known, a brief description of the Aurora1

abase is useful in order to show the dimension of the tests we
e carried out.  This database is derived from the TIDigits 
abase, which is built by utterances from 110 adult speakers
 male and 55 female) for training and 104 different adult 
akers (52 male and 52 female) for tests, recorded in clean 
ditions (SNR > 30 dB). For each original utterance, eight
es of noise were digitally added (subway, babble, car,
ibition hall, restaurant, street, airport and train station) at
ious signal-to-noise ratios (clean, 20dB, 15 dB, 10dB, 5 dB,
B and –5dB). Four groups of 1001 original TIDigits
inal utterances) were used to form the noisy ones [5].
Furthermore, two different filters were used to simulate
volutional noise: G.712 (for conventional telephony) and 
RS (to simulate GSM-like channels) [6]. All the eight above 
ntioned noise types were filtered using G.712. Moreover, 
 additional types of additive noise were obtained by MIRS 

ering the street and subway original noises, thus completing a 
al of ten types of noisy speech signals (Test A, B and C [5]),
even different SNR, generating a total of 70,070 (10 n
NR x 1001 original utterances) noisy signals for test.
The ASR system was trained using two distinct training 
tegies: clean training and multi-condition training; 8440

ginal TIDigits utterances were used in each training mode.
e first one was performed using the filtered and 8 kHz 

nsampled TIDigits. The multi-condition training was
omplished by using a combination of clean and noisy speech



signals; we followed exactly the detailed training and test setup
explained in [5]. Two different ETSI STQ standardized front-
ends were used for ASR performance evaluation: WI007 [5],
which consists of log-energy and 12 mel-cepstrum coefficients
plus their first and second derivatives, and the Advanced Front-
End WI008 [7], which have state-of-the art noise reduction and
blind equalization techniques (single channel) performed over
the

e speech
signals the clean filtered 8 kHz signals (PESQ = 4.5).

word
odels were trained only by clean speech signals.

noisy signal before mel-cepstrum coefficients extraction. 
The PESQ-MOS scores of each utterance of the test part of

the Aurora1 database were calculated using as referenc

5. Results
Differently of that was observed by Sun et al. in [2], in a first
attempt we did not get a good fitness of the PESQ-MOS x
recognition rate data points by any single function, as can be 
observed in Figure 3. Here, there are 70 data points for each
front-end (WI007 and WI008), corresponding to the ten types of 
noisy digits at seven different SNR. In this case, the 
m
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Figure 3 Logistic function fit for WI007 and WI008 
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When the ASR system was trained by a combination of 
clean and noisy speech signals (multi-condition training), the 
data points became less spread. This “concentration effect” can 
be clearly observed in Figure 4, where this tim

en using the WI007 front-end are shown.
Although the fitting polynomial found by Sun and

colleagues in [2] was obtained over a distinct database, with 
other noise types and a different ASR system, we also plotted in 
Figure 4 their fitting curve, just as a term of general
comparison. Of course, any kind of strict comparison cannot be 
made between our results a

ve mentioned reasons.
After have experimentally observed that it would be

difficult to establish a general relationship between PESQ-MOS
and speech recognition rate for all types of noise, in a second
attempt we investigated if it was possible that such a s

tionship could exist for a limited group of noise types.
Following [2] once again, part of the experimental data

analysis performed in this research was the observation of the 
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ten PESQ-MOS x SNR
sible curves are plotted in Figure 5.

ationship between PESQ-MOS scores and SNR for each type
noisy speech signal. Six of the total
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Figure 4 Logistic function fit, WI007 – multi training 
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Figure 5 PESQ-MOS versus SNR curves

Besides confirming the almost linear behavior of these
ves already reported in [2], we additionally observed that
se noisy signal types could be clearly separated into two 
ups: the first group is formed by Exhibition hall, Street
IRS filter) and Suburban train (Subway), while Crowd of
ple (Babble), Restaurant and Airport form the second group.
The first interesting result is that these two groups have also

 same “group behavior” when we plotted their PESQ-MOS
res versus speech recognition rates, as undoubtedly shown
Figure 6. In this case, the ASR system was structured with a
007 front-end and the “clean training mode” was used again.

Another surprising result is the fact that the noisy signals
up from the right-hand side of Figure 5 has gotten a much 
erior merit index than the other group, in spite of the fact that 
resents a greater PESQ-MOS score than the left-hand side
up for a given SNR. It means that, actually, it is not only the 



SNR neither the speech quality alone, measured by means of the 
PESQ algorithm, that governs the speech recognition
performance, but a combination of both. Given two groups of
noisy digits (obtained from the same clean signal but with 
different types of additive noise), each one with the same mean
PESQ-MOS scores, the group presenting greater SNR will
present a much better performance. This can be clearly observed
in Figure 6, at PESQ-MOS Score near to 2.0: a difference of
almost 50% (30% versus 80%) on Recognition Rate was
achieved by the second group of noisy signals over the first one. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

10

20

30

40

50

60

70

80

90

100

PESQ−MOS Score

R
ec

og
ni

tio
n 

R
at

e 
(%

)

Airport, Restaurant, Babble
Subway, Exhibition, Street (MIRS)
Ideal curve (a = 10, b = 2, c = 1)

a = 3.367, b = 7.696, c = 0.995
    (merit index = 0.580)

a = 4.256, b = 7.806,
c = 0.987 (merit = 0.750)

Figure 6 Group Logistic functions, WI007 – clean training 
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When the noisy signals are grouped according to their
position in the PESQ-MOS x SNR plot, a strong relationship
between PESQ-MOS and speech recognition rate can now be
observed, and the logistic curve fits (using the MSE criterio

data points with great success, as we can see in Figure 6. 
Finishing our discussion, the following statements c
blis ed as a consequence of the above related results: 

Based on our 70-point plots  (for each ASR system
setup), it was not possible to get a good fit of the 
PESQ-MOS x re
single function; 
On the other hand, a very good fit (in the MSE sense)
of the PESQ-MOS x recognition rate data points can be
done by the logistic function when the noisy spe
signals are grouped according to a good criterion;
The PESQ-MOS x SNR characteristic curve of each 
type of noisy signals is a good criterion to perform their
group classification, leading to a very good “logistic
type” of PESQ-MOS x recognition ra
when this grouping criterion is used; 
After adequately grouped into noisy signals type
classes, a given ASR system in a given “environment 
class” can be ranked by means of a single number, 
called merit index, which should be calculated using 
the logistic function parameters over a pre-d
and application-specific PESQ-MOS range; 
The well-defined behavior of the logistic function 
permits to predict the ASR rates outside the
experimental obtained values; this characteri
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6. Conclusions
 extensive investigation regarding the relationship between 
omatic speech recognition rates (gotten by a standardized 
R system under several noisy conditions [5]) and the ITU-T 
62 PESQ-MOS has been performed. Unlike reported in [2], a
eral relationship between PESQ-MOS speech quality
asures and recognition rates for all noise types could not be 
ll established.
On the other hand, a very good fit of the PESQ-MOS x 

ognition rate relationship can be done by a single logistic 
ction when the noisy speech signals are grouped according 
its PESQ-MOS x SNR curve. Furthermore, such a modeling 
ws some meaningful interpretations on the logistic function 
ameters in terms of the ASR error rate, and, unlike 
ynomial curves, it permits to make inferences in the regions 
side the experimental measures. 
An important consequence is that the PESQ-MOS may be 

d to predict the average achievable speech recognition rates
real-life applications, under certain conditions. Moreover, a
rit index based on the fitted logistic curve was proposed to 
k a given ASR system in a given group of ASR application
narios.
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