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Abstract

The relationship between an objective measure of speech
quality (PESQ) and the recognition rate of a given speech
recognition system was already investigated by other
researchers. In this paper, we present a further investigation on
such a relationship. In our research, the speech recognition tests
were performed on a wider class of signals and SNR. The
experimental setup as well as the speech recognition systems
now evaluated were based on the directions given by the Aurora
project. Moreover, a new parametric modeling approach for the
PESQ-MOS versus speech recognition rate curve, based on the
logistic function, is proposed. This new modeling allows some
meaningful interpretations of the parameters of the logistic
function in terms of system robustness, and permits to make
inferences in the regions outside the experimental measures.
Furthermore, the PESQ versus SNR characteristic was used to
group types of noise, leading to a much better fit of the logistic
function over the data points.

Index Terms: speech recognition, speech quality assessment

1. Introduction

Telephony speech signals are characterized by a great
variability in the level and type of background noise, especially
when arising from cell phones. In general, Automatic Speech
Recognition (ASR) systems have a good performance in silent
environments, but their performance used to drops dramatically
in noisy environments. When these systems are used in call
center applications, as an example, it would be useful if there
was some kind of objective speech quality measure that could
be able to predict the speech recognition rate of a given ASR
system, without spending time and money to carry out extensive
and expensive speech recognition tests.

Signal to noise ratio is the most common measure of a
signal’s quality, but normally it is not a good indicator of its
perceived quality [1]. On the other hand, tests conducted by Sun
and colleagues [2] suggest that the PESQ-MOS score, obtained
by the Perceptual Evaluation of Speech Quality (PESQ)
algorithm [3] is a better indicative for this purpose. In their
work, they proposed an empirical 4™ order polynomial fitting
curve for modeling the relationship between the PESQ-MOS
scores and the speech recognition rate, for some additive and
convolutional noise scenarios.

This paper presents a further investigation of such a
relationship between PESQ-MOS scores and the ASR rate, with
three main contributions over Sun’s et al. work [2]: 1) tests were
performed on Auroral database, with a wider class of signals
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and SNR, providing a more robust evaluation; 2) a new
parametric approach for the PESQ x recognition rate curve,
based on the logistic function, is proposed, which allows some
meaningful interpretations of the logistic function parameters in
terms of the ASR system robustness; 3) the PESQ x SNR curve
was used to group different types of noise that lead to similar
ASR performance. These and other related issues are further
discussed in the next sections of this article.

2. PESQ

When characterizing the perceptual quality of a speech signal,
the Mean Opinion Score (MOS) is usually considered the most
reliable test that can be performed. However, it is not practical
on most cases due to the great human effort necessary to carry it
out. The PESQ algorithm [3] was selected by the ITU to be a
replacement of the subjective MOS evaluation in some well-
defined situations.

The objective PESQ-MOS scores have a high correlation
(more than 93%) with the subjective MOS scores under a wide
range of conditions, and can be used to perform assessment of
different codecs and end-to-end telecommunication networks. It
takes two signals, a clean one and a noisy version of it, and
compares both using perceptual models for the perceived pitch
(Bark scale) and intensity (subjective loudness). There is a small
scale shift between the MOS and the PESQ-MOS range: the
MOS scale varies from 1 (worst quality) to 5 (best quality),
whereas the PESQ scale range from —0.5 to 4.5.

3. PESQ x Recognition Rate

Parametric Modeling

In [2], Sun et al. have tried to fit the PESQ x recognition rate
data points by means of a 4™-order polynomial curve. But in our
experiments, as we will show in the next sections, it was
observed that the PESQ x recognition rate curve resembles the
shape of a logistic function. Based on this similarity, we have
proposed a parametric modeling of this curve using the logistic
function. This new approach leads to some interesting
interpretations, which never could be achieved by a non
parametric polynomial curve, as shown next.

We used the logistic function with three free parameters: a,
b and ¢, defined according to (1):

1 _ e*ax

f(x) = C{Heb_axJ x100 (1)

Now, parameters a, b and ¢ can be interpreted as follows:
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3.1. Parameter a

This parameter controls the slope of the curve, as shown in
Figure 1. It can be viewed as the “sensitivity of the system to
PESQ variation”. Observe that the higher is this parameter, the
steepest is the curve.
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Figure 1 Effects of parameter a in the logistic curve.

3.2. Parameter b

Observing Figure 2, it can be easily noted that parameter b
controls the horizontal offset of the curve: as b increases, the
curve is shifted to the right. Analyzing this curve from right to
left, it can be seem that, for fixed a and ¢, the lower is b, the
better (in terms of robustness) is the ASR system, because it can
keep high recognition rates for lower values of PESQ-MOS.

3.3. Parameter ¢

Parameter ¢ controls the range of the curve in the vertical
direction: as ¢ increases, the recognition rate range increases
too. This effect has an interesting interpretation: as the logistic
function (1) tends monotonically to 1 as x tends to infinity, a
value of ¢ = ¢y will cause the curve to tend to ¢y as x tends to
infinite. In our approach, x is the PESQ-MOS score, so when x
is 4.5, it corresponds to the clean signal. Therefore, ¢, can be
interpreted as the average recognition rate in clean conditions.

3.4. Merit index

We have also proposed an original merit index to rank a given
speech recognition system regarding its robustness and
recognition rate performance. In order to calculate the proposed
merit index, it is necessary to establish an application-specific
PESQ-MOS range. In next figures, all merit indexes were
calculated over the 1.5 to 3.5 PESQ-MOS range. The merit
index, which is a real number between 0.0 and 1.0, can thus be
easily obtained by simple calculation of the logistic function
mean value, using (1), except the factor of 100, with x sampled
at the 0.5 distance points over the PESQ-MOS range. For
example, in our above proposed PESQ-MOS range, x is
sampled at the points x; = {1.5, 2.0, 2.5, 3.0, 3.5}.
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Figure 2 Effects of b parameter in the logistic curve.

4. Experimental Setup

The experimental tools used in this research consisted of a
standardized speech recognition system, built using HTK [4]
(for the back-end part of the system), and the Auroral database
[5]. The whole word (ten digits plus ok and two “silent”
models) HMM configurations used for the HTK back-end setup
followed the detailed directions set for the first part of the
Aurora project [5], which are, summarizing, the following ones:
16 states per word, simple left-to-right models (without skips
over states), mixture of 3 Gaussians per state, diagonal
covariance matrix.

Although well known, a brief description of the Auroral
database is useful in order to show the dimension of the tests we
have carried out. This database is derived from the TIDigits
database, which is built by utterances from 110 adult speakers
(55 male and 55 female) for training and 104 different adult
speakers (52 male and 52 female) for tests, recorded in clean
conditions (SNR > 30 dB). For each original utterance, eight
types of noise were digitally added (subway, babble, car,
exhibition hall, restaurant, street, airport and train station) at
various signal-to-noise ratios (clean, 20dB, 15 dB, 10dB, 5 dB,
0 dB and —5dB). Four groups of 1001 original TIDigits (4004
original utterances) were used to form the noisy ones [5].

Furthermore, two different filters were used to simulate
convolutional noise: G.712 (for conventional telephony) and
MIRS (to simulate GSM-like channels) [6]. All the eight above
mentioned noise types were filtered using G.712. Moreover,
two additional types of additive noise were obtained by MIRS
filtering the street and subway original noises, thus completing a
total of ten types of noisy speech signals (Test A, B and C [5]),
at seven different SNR, generating a total of 70,070 (10 noises x
7 SNR x 1001 original utterances) noisy signals for test.

The ASR system was trained using two distinct training
strategies: clean training and multi-condition training; 8440
original TIDigits utterances were used in each training mode.
The first one was performed using the filtered and 8 kHz
downsampled TIDigits. The multi-condition training was
accomplished by using a combination of clean and noisy speech
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signals; we followed exactly the detailed training and test setup
explained in [5]. Two different ETSI STQ standardized front-
ends were used for ASR performance evaluation: WI007 [5],
which consists of log-energy and 12 mel-cepstrum coefficients
plus their first and second derivatives, and the Advanced Front-
End WI008 [7], which have state-of-the art noise reduction and
blind equalization techniques (single channel) performed over
the noisy signal before mel-cepstrum coefficients extraction.

The PESQ-MOS scores of each utterance of the test part of
the Auroral database were calculated using as reference speech
signals the clean filtered 8 kHz signals (PESQ = 4.5).

5. Results

Differently of that was observed by Sun et al. in [2], in a first
attempt we did not get a good fitness of the PESQ-MOS x
recognition rate data points by any single function, as can be
observed in Figure 3. Here, there are 70 data points for each
front-end (WI007 and WI008), corresponding to the ten types of
noisy digits at seven different SNR. In this case, the word
models were trained only by clean speech signals.
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Figure 3 Logistic function fit for WI007 and WI008

When the ASR system was trained by a combination of
clean and noisy speech signals (multi-condition training), the
data points became less spread. This “concentration effect” can
be clearly observed in Figure 4, where this time only the results
when using the WI007 front-end are shown.

Although the fitting polynomial found by Sun and
colleagues in [2] was obtained over a distinct database, with
other noise types and a different ASR system, we also plotted in
Figure 4 their fitting curve, just as a term of general
comparison. Of course, any kind of strict comparison cannot be
made between our results and the results related in [2], due the
above mentioned reasons.

After have experimentally observed that it would be
difficult to establish a general relationship between PESQ-MOS
and speech recognition rate for all types of noise, in a second
attempt we investigated if it was possible that such a strong
relationship could exist for a limited group of noise types.

Following [2] once again, part of the experimental data
analysis performed in this research was the observation of the
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relationship between PESQ-MOS scores and SNR for each type
of noisy speech signal. Six of the total ten PESQ-MOS x SNR
possible curves are plotted in Figure 5.
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Figure 4 Logistic function fit, WI007 — multi training
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Figure 5 PESQ-MOS versus SNR curves

Besides confirming the almost linear behavior of these
curves already reported in [2], we additionally observed that
those noisy signal types could be clearly separated into two
groups: the first group is formed by Exhibition hall, Street
(MIRS filter) and Suburban train (Subway), while Crowd of
people (Babble), Restaurant and Airport form the second group.

The first interesting result is that these two groups have also
the same “group behavior” when we plotted their PESQ-MOS
scores versus speech recognition rates, as undoubtedly shown
by Figure 6. In this case, the ASR system was structured with a
WI007 front-end and the “clean training mode” was used again.

Another surprising result is the fact that the noisy signals
group from the right-hand side of Figure 5 has gotten a much
inferior merit index than the other group, in spite of the fact that
it presents a greater PESQ-MOS score than the left-hand side
group for a given SNR. It means that, actually, it is not only the



INTERSPEECH 2006 — ICSLP

SNR neither the speech quality alone, measured by means of the
PESQ algorithm, that governs the speech recognition
performance, but a combination of both. Given two groups of
noisy digits (obtained from the same clean signal but with
different types of additive noise), each one with the same mean
PESQ-MOS scores, the group presenting greater SNR will
present a much better performance. This can be clearly observed
in Figure 6, at PESQ-MOS Score near to 2.0: a difference of
almost 50% (30% versus 80%) on Recognition Rate was
achieved by the second group of noisy signals over the first one.
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Figure 6 Group Logistic functions, WI007 — clean training

When the noisy signals are grouped according to their
position in the PESQ-MOS x SNR plot, a strong relationship
between PESQ-MOS and speech recognition rate can now be
observed, and the logistic curve fits (using the MSE criterion)
the data points with great success, as we can see in Figure 6.

Finishing our discussion, the following statements can be
established as a consequence of the above related results:

I.  Based on our 70-point plots (for each ASR system
setup), it was not possible to get a good fit of the
PESQ-MOS x recognition rate points by means of any
single function;

II.  On the other hand, a very good fit (in the MSE sense)
of the PESQ-MOS x recognition rate data points can be
done by the logistic function when the noisy speech
signals are grouped according to a good criterion;

The PESQ-MOS x SNR characteristic curve of each
type of noisy signals is a good criterion to perform their
group classification, leading to a very good “logistic
type” of PESQ-MOS x recognition rate curve behavior
when this grouping criterion is used;

After adequately grouped into noisy signals type
classes, a given ASR system in a given “environment
class” can be ranked by means of a single number,
called merit index, which should be calculated using
the logistic function parameters over a pre-determined
and application-specific PESQ-MOS range;

The well-defined behavior of the logistic function
permits to predict the ASR rates outside the
experimental obtained values; this characteristic is not
achievable by any polynomial fitting curve.
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6. Conclusions

An extensive investigation regarding the relationship between
automatic speech recognition rates (gotten by a standardized
ASR system under several noisy conditions [5]) and the ITU-T
P.862 PESQ-MOS has been performed. Unlike reported in [2], a
general relationship between PESQ-MOS speech quality
measures and recognition rates for all noise types could not be
well established.

On the other hand, a very good fit of the PESQ-MOS x
recognition rate relationship can be done by a single logistic
function when the noisy speech signals are grouped according
to its PESQ-MOS x SNR curve. Furthermore, such a modeling
allows some meaningful interpretations on the logistic function
parameters in terms of the ASR error rate, and, unlike
polynomial curves, it permits to make inferences in the regions
outside the experimental measures.

An important consequence is that the PESQ-MOS may be
used to predict the average achievable speech recognition rates
in real-life applications, under certain conditions. Moreover, a
merit index based on the fitted logistic curve was proposed to
rank a given ASR system in a given group of ASR application
scenarios.
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