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Abstract
The success of a speaker identification system depends largely 
on the set of features used to characterize speaker-specific 
information. In this paper, we discuss a small set of low-level 
acoustic parameters that capture information about the speaker’s 
source, vocal tract size and vocal tract shape. We demonstrate 
that the set of eight acoustic parameters has comparable 
performance to the standard sets of 26 or 39 MFCCs for the 
speaker identification task. Gaussian Mixture Models were used 
for constructing speaker models. 
Index Terms: speaker identification, acoustic parameters, 
Gaussian Mixture Models (GMM), Mel-Frequency Cepstral 
Coefficients (MFCC), speaker specific features 

1. Introduction
The goal of speaker identification is to determine which one of 
a group of known speakers best matches the test speech sample. 
Speaker identification can be constrained to a known phrase 
(text-dependent) or totally unconstrained (text-independent) [1]. 
Success in this task depends on extracting speaker-dependent 
features from the speech signal that can effectively distinguish 
one speaker from another. Various features have been employed 
in the past for speaker identification, the most popular among 
them being the mel-frequency cepstral coefficients (MFCCs) as 
they carry both speech and speaker information. Although the 
MFCCs implicitly capture speaker-specific information, we 
want to explore parameters that explicitly capture this 
information.

The set of Acoustic Parameters (APs) that we propose are 
aimed at extracting speaker-specific features from the speech 
signal that will help distinguish one speaker from another. Our 
set of features consists of four formants (F1, F2, F3, F4), the 
amount of periodic and aperiodic energy in the speech signal, 
the spectral slope of the signal and the difference between the 
strength of the first and second harmonics. We performed text-
independent speaker identification experiments using our 
feature set and the standard MFCCs for populations varying 
from 50 to 250 speakers of the same gender.

The results show that our eight parameters have a better 
performance for female speakers than that of the 26 MFCCs and 
39 MFCCs and on the average they have comparable 
performance for varying population size. 

Section 2 describes the theoretical motivation and the 
feature set that we have employed and their computation is 
briefly described in Section 3. The database used and the 
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eriments that we conducted are explained in Section 4. 
tion 5 discusses the results obtained, and important 
clusions and future work are outlined in Section 6. 

2. Motivation and Set of Features 
ile traditional speaker identification systems rely on the 
al tract dynamics and under-emphasize the significance of 
 source, more recent work has shown that the addition of 
rce information can prove to be valuable speaker-specific 

ormation [2]. The MFCCs implicitly code the vocal tract 
ormation and some source information in them, while the 
oustic Parameters (APs) attempt to explicitly arrive at this 
ormation. To capture the difference in articulatory strategies 
oss speakers, APs were developed that measure from the 
ech signal the acoustic cues associated with different voice 
lities (source information) and different vocal tract 
figurations.

. Features of the source 
e source information of a speaker depends on factors such as 
 shape and timing of the glottal pulses, whether or not the 
al folds close completely and, the tradeoff between the 
ttal source and supraglottal source during voiced obstruent 
nds. Based on these factors, one can describe the way a 
aker sounds in terms of the voice quality of the speaker. 
ese speaker-specific characteristics determine (a) the high-
quency roll off of the speech spectrum, (b) the relative 
plitudes of the very low-frequency harmonics, and (c) the 
monic and inharmonic structure of the speech waveform 
pectively.  

Voice qualities can be divided into several broad categories 
h as modal, breathy, creaky, pressed voice, etc. Klatt and 
tt [3] contrast the difference in acoustic properties of speech 
duced with a modal voice, a breathy voice and a pressed 
ced. During modal speech, the speech spectrum is harmonic 
oughout with a high-frequency roll off of 12 dB/octave. 
wever, in breathy phonation, the vocal folds do not close 
pletely and the glottal waveform is more sinusoidal. This 

ds to a steeper high-frequency roll off and a very prominent 
t harmonic. In addition, the higher frequencies, starting 
und F3 are inharmonic due to aspiration. In pressed speech, 
 vocal folds close more abruptly which leads to considerably 
re high frequency energy relative to that seen in modal 
ech. Finally, in creaky voice, the vocal folds have an 
gular vibration pattern so that the fundamental frequency is 
ally very low.  

September 17-21, Pittsburgh, Pennsylvania



INTERSPEECH 2006 - ICSLP
The parameters that we used to capture the differences in 
what is happening at the source are: (1) the spectral slope, (2) 
the difference between the amplitudes of the first and second 
harmonic (H1-H2), (3) the proportion of periodic energy in the 
speech signal and (4) the proportion of aperiodic energy in the 
speech signal. As an illustration, Figure 1 shows the difference 
in these parameters for a portion of an utterance produced by 
same speaker using his modal voice, a breathy voice and a 
creaky voice. The proportion of periodic and aperiodic energy 
was determined by our Aperiodicity Periodicity and Pitch (APP) 
Detector [4]. The APP detector generates a spectro-temporal 
profile of the periodic and aperiodic regions in the speech signal 
(part (b) of Figure 1) and also provides a summary measure of 
the amount of the periodic energy and aperiodic energy in the 
signal.(part (c) of Figure 1). The parameter H1-H2 (part (d) of 
Figure 1) is found to be 3.91, 14.51 and -1.94 dB for the modal, 
breathy and creaky voice respectively. 

At present, the APP detector does not distinguish between 
aperiodicity due to noise and aperiodicity due to irregular vocal 
fold vibration. Thus, the APP detector finds considerably more 
aperiodicity during creaky voice than during breathy voice. 

The relative amounts of periodic and aperiodic energy 
during voiced sounds not only tell us about voice quality, but 
they also tell us about the different articulatory strategies used 
by speakers when producing voiced obstruents which are 
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Figure 2: Top: Spectrogram, Middle: spectro-temporal 
profile (periodic in black and aperiodic in green), Bottom: 
periodic (red solid line) and aperiodic (blue dotted line) 
summary information for the letter “Z” for 3 different 
speakers

1476
onically produced with a strong supraglottal source and a 
aker glottal source [5]. Figure 2 shows spectrograms of the 
habet “Z” produced by three different speakers. Speaker 1 
duces the /z/ with a strong glottal source and little turbulence 
that the amount of periodic energy is considerably strong 
n the amount of aperiodic energy throughout. Speaker 2 
rts by producing the /z/ with a stronger glottal source, but 
nsitions to producing it with a stronger turbulent source (i.e., 
narrows the alveolar constriction as he is producing the /z/). 
eaker 3 produces the /z/ canonically, with a strong turbulent 
rce throughout the sound. It is hoped that tradeoffs of this 
d will be captured in the Gaussian Mixture Models (GMM) 
mework given we are using multimodal distributions. Note 
t some speakers, particularly when talking casually, will 
duce weaker voiced fricatives like /v/ and voiced stop 
sonants with such a weak constriction that they will contain 
ng periodic energy and little, if any, aperiodic energy [6,4].   

. Features of the vocal tract 
e frequencies of the formants during sonorant sounds provide 
ormation about the length and shape of the vocal tract. 
nerally, F1 and F2 vary considerably due to the vowel being 
iculated, whereas F3 and F4 change very little. The vocal 
ct length of a speaker can usually be characterized by F3. 
wever, we have found that F3 and the higher formants may 
indicative of vocal tract shape during sonorant consonants 
ere narrower constrictions are produced. For example, the 
erican English /r/ sound can be produced with a variety of 
al tract configurations that all give a very similar acoustic 
file for F1-F3 [7]. However, it appears that the higher 
mants, in particular F4 and F5, may be acoustic signatures of 
 differences in vocal tract shape. Figure 3 shows 
ctrograms of the nonsesnse word “warav” produced by two 
ferent speakers, and flesh-point data showing tongue position 
ing the /r/ sound. The /r/ in the word on the left is produced 
h the tongue dorsum high and tongue tip lower, whereas the 
rd on the right is produced with the tongue tip high and 
gue dorsum lower. The trajectories of F1, F2 and F3 between 
 /r/ and adjacent vowels look similar across both words. 
wever, F4 and F5 show little movement between the /r/ and 
 adjacent vowels in the spectrogram on the left   In contrast, 
(a)

(b)

(c)

(a)

(b)

(c)

(d) (d)

Fig 1 : Spectrogram (a) & Spectro-Temporal Profile (b) for a Modal (Left), Breathy (Middle) and Creaky voice (Right); 
green  dots represent aperiodicity and black  dots represent periodicity content. The figures (c) show the summary 

aperiodicity (green) and periodicity (black) measure, while (d) show a spectrum slice for each case

H1 
H2 

H1 H2 
H1 H2 



in the spectrogram on the right, F4 and F5 track F3. Thus, they 
are significantly lower during the /r/ sound relative to their 
positions during the adjacent vowels. 

Figure 3: Spectrogram (top)  of nonsense word ‘warav’ said by 
two different speakers and flesh point data (3 palletes) showing 
tongue position of /r/  at the lowest point of F3.

The parameters that we used to capture the differences in 
vocal tract configuration are the first four formants: F1, F2, F3 
and F4. The fifth formant is not used since we are using 
telephone speech sampled at 8 kHz. Note that while we have 
thought of F4 as providing information about vocal tract shape, 
there is research that shows a strong relationship between F4 
and the dimensions of the laryngeal cavity  during vowel sounds 
[8, 9]. 

3. Automatic Computation of Features 
The computation of the eight acoustic parameters described in 
the previous section was completely automated. The formant 
frequencies were computed using the ESPS Formant Tracker. 
The reliability of these parameters is dependent on the accuracy 
of the formant tracker. However we did not make any manual 
corrections to the formant frequency values. These errors would 
be partially compensated if they are systematic errors and due to 
the fact that we are not interested in the instantaneous formant 
values, but rather the range of the formant frequencies. 

The proportion of periodicity and aperiodicity was 
calculated using the APP detector. The algorithm first computes 
the Average Magnitude Difference Function (AMDF) over a 
pre-defined lag range for all the non-silent frequency channels 
in a given frame. For a periodic channel, the AMDF exhibits 
strong minima at regular lag intervals (corresponding to the 
period of the signal), whereas for an aperiodic signal the AMDF 
has numerous minima at random lags. The locations of these 
minima will be coherent across the different channels for a 
predominantly periodic frame. The APP detector quantizes this 
distribution of the AMDF minima across the channels to 
estimate the proportion of periodicity and aperiodicity. 

The spectral slope was computed by fitting a regression line 
to the spectrum of the signal. The slope of the line yields the 
spectral tilt. The first and second harmonics are located by 
finding the first two prominent peaks in the spectrum. Suitable 
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esholds were used to avoid small and insignificant peaks and 
 peaks that are unreasonably close to each other. The 

ference in the amplitudes of the harmonics (H1-H2) was used 
the parameter. 

4. Experiments
number of text-independent speaker identification 

eriments on telephone speech were conducted. The 
ulation size of each experiment was varied from 50 to 250 
akers and they were either all male speakers or all female 
akers. The speaker identification system selected the speaker 
m the set of speaker models that best matched the test 
erance. The NIST ‘98 Evaluation Database was used for the 
eriments. Several test utterance from each speaker was used, 

ulting in a large number of Speaker-ID tests for both the 
ale and male population. 

. Database
e NIST ‘98 Evaluation Database consists of telephone speech 

pled at 8 kHz. The Database contains 250 male speakers and 
 female speakers. The training utterances are taken from the 

in/s1a/ directory and the testing utterances are taken from the 
t/30/ directory of the database. There is no handset variation 
ween the training and the test utterances. The length of each 
ining utterance is approximately 1 minute and the testing 
erances are about 30 seconds in duration. An energy 
eshold was used to remove the silence portion (which 

etimes has low amplitude background noise) from the 
ech. This resulted in training utterances of about 30 to 40 
onds and testing utterances of about 10 to 20 seconds. 

. Method
e features (both MFCCs and APs) were computed from the 
ech signal every 10 ms. Thirteen MFCCs were computed 
ng cepstral mean normalization; the zeroth cepstral 
fficient was not used. The set of 26 MFCCs consisted of the 

coefficients and their derivatives. The acceleration 
fficients were appended to these to obtain the 39 MFCCs. 

The speaker models were constructed using the Gaussian 
xture Models (GMM) and were trained using maximum-
elihood parameter estimation [10]. The MIT-LL GMM 
tem was used for constructing the speaker models. Various 
del orders were tested and we empirically determined that 
 32-mixture GMM gave the best performance for the APs 
 the MFCCs. The test utterance was identified with the 
aker whose model yields the highest likelihood for the test 

erance. The accuracy of the system was computed using the 
ntification errors made by the system. To obtain the 
uracies for different population sizes, the 250 speakers of 
h gender were divided into groups where the number of 
akers in each group is the population size. The accuracy for 
 particular population size is the average of the accuracies 
r all the groups. 

5. Results
e speaker identification experiments were conducted with 
ferent feature sets. The error rates of the systems are  



summarized in Table 1. 

Table 1: Speaker Identification Error Rate for 8 APs, 26 
MFCCs and 39 MFCCs

Pop. 
Size 

Gender 
 (# of test utt) 

8
APs

26
MFCCs

39
MFCCs

Female (1379) 28.06 31.91 30.75 
  Male (1308) 25.00 22.40 22.55 50
  Average 26.53 27.16 26.65 

Female (1104) 31.71 36.59 35.15 
  Male (1093) 27.17 25.62 26.35 100

  Average 29.44 31.11 30.75 
Female (1379) 33.65 38.95 37.49 

  Male (1308) 30.04 27.37 27.98 125

  Average 31.85 33.16 32.74 
Female (1379) 36.69 43.29 42.57 

  Male (1308) 34.40 31.65 32.11 250

  Average 35.55 37.47 37.34 

We observe that our features give a significant improvement 
over the performance of the 26 MFCCs and 39 MFCCs for the 
female speakers. However for the male speakers, the MFCCs 
yield better performance. This trend is consistent for different 
population sizes. A plausible explanation is that females differ 
more in the degree of breathiness, and this information should 
be captured and well modeled by our source parameters. To 
avoid biasing the results, an unweighted average was taken 
since the number of female speakers is higher. On the average, 
the 8 APs have a comparable performance to the 26 and 39 
MFCCs.

The average error rate increases with increasing population size 
(Figure 4). This is expected since the number of confusions 
increase for a larger population. The performance gap between 
the 8 APs and 39 MFCCs increases as the speaker population 
grows larger. In this paper, some of the identification error rates 
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Figure 4: Average Error Rate vs. Population Size 
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tained are high, since we have performed the task on large 
pulations of the same gender.

6. Conclusions and Future Work 
this paper, we have discussed a set of acoustic parameters 
t attempt to capture speaker-specific characteristics. Our 
ture set consists of only eight parameters and it has a 

parable performance to the standard set of 26 or 39 MFCCs 
 text-independent speaker identification task. Work is in 
gress to add more parameters to our existing feature set in 
er to obtain more speaker-specific information. In particular, 
 are presently working on the automatic extraction of 
akiness and nasalization. We plan to conduct more detailed 
eriments to test the accuracy and robustness of our feature 

. We would also like to capture the temporal information of 
 parameters and would have to use a framework other than 
 GMMs. Additionally, we will explore a supervised approach 
speaker identification since the relationship between acoustic 
perties and source/vocal tract information may change across 
sses of speech sounds.
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