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Abstract

In this paper, we propose a new feature extraction method based
on higher-order local auto-correlation (HLAC) and Fisher weight
map (FWM). Widely used MFCC features lack temporal dynam-
ics. To solve this problem, 35 types of local auto-correlation fea-
tures are computed within two-dimensional local regions. These
local features are accumulated over more global regions by weight-
ing high scores on the discriminative areas where the typical fea-
tures among all phonemes are well expressed. This score map
is called Fisher weight map. We verified the effectiveness of the
HLAC and FWM through vowel recognition and total phoneme
recognition.

Index Terms: phoneme recognition, linear discriminant analysis,
Fisher weight map.

1. Introduction

In speech recognition, MFCC (Mel-Frequency Cepstrum Coeffi-
cient) is widely used which is a cepstrum conversion of a sub-band
mel-frequency spectrum within a short time. Due to the character-
istic of short time spectrum, MFCC lacks temporal dynamic fea-
tures and degrades the recognition rate. To overcome this defect,
the regression coefficients of MFCC (delta, delta delta MFCC) are
usually utilized, but they are indirect expression of temporal fre-
quency changes such as formant transition or high frequency plo-
sives.

More direct expression of the temporal frequency changes will
be a geometrical feature in a two-dimensional local area, for ex-
ample within 3 frames by 3 frequency bands area, on the temporal
frequency domain[1]. Fig.1 shows a time wave and spectrogram
of a word ”democrats”. On the lower frequency band, several for-
mant transitions are observed and in a high frequency band, the
plosive is observed.

In order to locate such two-dimensional geometrical features,
auto-correlation within a local area is effective because it can en-
hance the geometrical features. Originally this type of feature ex-
traction was proposed in the field of facial emotion recognition [2].
Otsu computed 35 types of local auto-correlation features within a
two-dimensional local area at each pixel on an image and accumu-
lated them within some discriminative areas where the typical fea-
tures among all emotions were well expressed. The map showing
this discriminative areas was called Fisher weight map and Otsu
employed a discriminant analysis to find this Fisher weight map.

We propose, in this paper, a method to find the geometrical dis-
criminative features and discriminative areas of phonemes on the
temporal-frequency domain of speech signals by using the Fisher
weight maps. In the vowel recognition, the formant features were

proved to be a discriminative features by investigating the resultant
Fisher weight maps.

In section 2 of this paper, we describe an extraction flow of
the geometrical discriminative features for phoneme recognition.
In section 3 and 4, auto-correlation coefficients based on the local
features and the Fisher weight maps are described. In section 5,
phoneme recognition experiments are shown.
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Figure 1: Example of a spectrogram of speech signal.

2. Extraction flow of geometrical
discriminative features

Fig.2 shows an extraction flow of geometrical discriminative fea-
tures and phoneme recognition. At first, speech waveforms are
converted into time-frequency domain by short-time Fourier trans-
formation. At this point, a time sequence of short-time spectra
(frames) is obtained. Then a moving window with consecutive
several frames, is put on the time sequence of short-time spectra,
forming a windowed time- frequency matrix. Local features of
35 types are computed at each position (time, frequency) within
this window, forming a local feature matrix H with the number of
positions x 35 types of local features.

Finally Fisher weight map w is produced by applying linear
discriminant analysis (LDA) to the local feature matrix H. Geo-
metrical discriminative features are obtained as weighted higher-
order local auto-correlation by summing up the local features
weighted by the Fisher weight map for each type of local features,
forming 35 dimensional vector = for a window. By moving this
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window, a sequence of 35 dimensional vectors of geometrical dis-
criminative features are obtained.

In a phoneme recognition, phoneme GMMs are trained at first.
Then the test speech data is converted into a sequence of 35 dimen-
sional vectors of geometrical discriminative features and phoneme
likelihood is computed using the trained phoneme GMMs.
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Figure 2: Flow of new feature extraction.

3. Local features and weighted higher order
local auto-correlations

3.1. Local features

Two-dimensional geometrical and local features are observed on
the time-frequency matrix shown on the left in Fig.3. On the right
hand side, 3 x 3 local patterns are shown to capture the local fea-
tures. The upper pattern is for continuation in a time direction, the
middle for continuation in a frequency direction and the lower for
transition. The flag ”’1” indicates the multiplication of the spec-
trum on the position.

A local feature within the k-th local pattern at a position 7 is
formalized as follows;

BE) = 1) I(r +al™y - I(r + o) (1)

where I(r) is the power spectrum at the position r on time-
frequency matrix composed of time ¢ and frequency f. The
r+ agk) indicates the other position, where ”’1” is attached, within
the k-th local pattern.

By limiting local patterns within 3 frames x 3 bands area
at reference position r, setting the order N to be 2 and omit-
ting the equivalence of translation, the number of displacement set
(a1, -+ ,an) becomes 35. Namely 35 types of local patterns are
obtained at each position 7 on the time-frequency matrix as shown
in Fig.4, according to Otsu[2]. In the figure, 2" and 3" indicate
the square and the cube.

3.2. Weighted higher order local auto-correlations

Higher-order local auto-correlation xj, for the k-th local pattern
is obtained by summing the local features shown in Eq.1 on the

time-frequency matrix. It is formalized as follows;

Tk IZ hik)

=> "I I(r+a?) - I(r+af) )

In order to express the higher-order local auto-correlation in
the matrix form, all the local features shown in Eq.1 for the k-th
local pattern are collected on the time-frequency matrix and pre-
sented as a following vector.

k k k k
h( ) = [héz) o 'hé,%fh T h%zLTﬂ]t 3)

here the dimension of the vector is M =T — 2 (time) X F — 2
(frequency).

The higher-order local auto-correlation xj for the k-th local
pa}it)ern is expressed as follows using the M-dimensional vector
h'".

zr = h® )

A local feature matrix is obtained as follows by placing the
M-dimensional vectors h®) in the horizontal direction one by one
for all the 35 local patterns.

H=["...n") (5)

The higher-order local auto-correlation vector x is obtained by
packing the x; and is expressed as follows;

x=[z zx]  =H1 (6)

Fig.5 shows an example of computing the local feature ma-
trix H. Here, moving 35 local patterns on the windowed time-
frequency matrix (9 x 6), the local features are computed. These
local features are packed into the local feature matrix H (28 x 35).

The higher-order local auto-correlation vector x presents the
existence of the local patterns on all over the time-frequency ma-
trix. Therefore, it is not the discriminative vector. In order to
make the higher-order local auto-correlation vector x have the
discriminative ability, local features of the same local pattern are
summed over the windowed time-frequency matrix by putting the
high weight on the local features where class difference appears
clearly. This is done by replacing the vector 1 consisting of M
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Figure 3: Local features.
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”1”s by the weighting vector w. Then the weighted higher-order
local auto-correlation vector x is obtained as follows;

x=H'w N
Here w is called Fisher weight map because it is computed based
on linear discriminant analysis.

4. Fisher weight map

In order to find the Fisher weight map, Fisher’s discriminative
criterion is utilized[2]. Let N be the number of training data.
Then the local feature matrices for the training data is denoted as
{H; € RM*¥}N . The corresponding weighted higher-order
local auto-correlation vectors, the within-class covariance matrix
and the between-class covariance matrix are denoted as {x;},,
Sw and Sp respectively. Then the Fisher discriminative criterion
J(w) is expressed as follows using those denotations.

. tT‘iB
tT‘iW

. wiXpw
wtlww

T(w) ®)

where Yy and X is the within-class covariance matrix and the
between-class matrix of the local feature matrices (training data).

The Fisher weight map is obtained as eigen vectors w based
on the following generalized eigen value decomposition derived by
maximizing the Fisher discriminative criterion under the constraint
such that wiXyww = 1

YW = AXww 9

Since the Fisher weight map is composed of several eigen vectors,
the number of eigen vectors is optimized in the phoneme recogni-
tion process.

5. Phoneme recognition experiments
5.1. Experimental setup

We carried out Japanese 5 vowel recognition and total 27
phonemes recognition. Speech material was continuous speech
data spoken by one male speaker and was manually segmented

N=0
1
0.1
N=1 1 1 1
2 111 1 1 1
No. 2 0.3 0.4 0.5 0.6
N=2 1 2 1 2 1
3 211 1]2 2 1 2 1 2
No. 7 0.8 0.9 0. 10 o.11 0.12 0.13 0. 14
2 1 1 1 1 1 1
1 111 1 1 1 11 1 1
1 1 1 1 1
0.15 0. 16 0.17 0.18 0.19 0.20 0.21 0.22
1 ! ! 1 1
11 1]1 1 1 11 11 1 11
1 |1 1 T T 1
0.23 0.24 0.25 0.26  No.27 0.28 0.29 0.30
1 1 1 1
1 111 1 1)1 1
1 1 1 1
No. 31 0.32 0.33 0.34 0.35

Figure 4: 35 types of local patterns.
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Figure 5: Local feature matrix.

into phoneme sections. In the vowel recognition, 100 data seg-
mented by hands for each vowel (in total 500 data) were used to
train each vowel GMM and other 100 data were tested for each
vowel. In the total phoneme recognition, 2578 data segmented by
hands for all phonemes were used for total phoneme training and
other 2578 phoneme data were tested.

Speech waveform was transformed into time-frequency ma-
trix by short-time Fourier transformation with 25ms frame width
and 10ms frame shift. Then a window with 7" frame width and
S frame shift was moved on the time-frequency matrix and the
windowed time-frequency matrix was generated. The number of
eigen vectors W included in the Fisher weight map was optimized
in the phoneme recognition. The number of Gaussian mixtures G
in phoneme GMM was also optimized experimentally.

5.2. Recognition results

Table1 shows the recognition results for vowel and total phonemes,
compared with the recognition result using MFCC with 12 coef-
ficients (delta is not used). In the vowel recognition, the high-
est recognition rate 98.8% was obtained with the moving window
width 7" = 3 frames, the window shift S = 1 frame, the num-
ber of eigen vectors W = 3 (35 x 3=105 dimensions) in the
Fisher weight map and the number of Gaussian mixtures G = 1 in
vowel GMMs. Compared with MFCC, the recognition rate 98.8%,
3 points higher, was achieved.

Table 1: Phoneme recognition result.

Vowel | Total phonemes
Proposed method || 98.8% 81.7%
MFCC 95.8% 84.6%

Fig.6 shows the dependency of vowel recognition on the num-
ber of eigen vectors W in the Fisher weight map, the moving win-
dow width T" and the window shift S. From the figure, they are
optimized at W = 4, T = 3 and S = 1. The number of Gaus-
sian mixtures GG in vowel GMM was optimized for each condi-
tion. Looking into the Fisher weight map thus obtained (W = 5),
formant frequencies show higher score as shown in Fig.7(a) with
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horizontal black stripes.
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(a) Vowel recognition as a function of the number of eigen
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Figure 6: Parameter dependency in vowel recognition.

soo0 o000 s000 o000 o000

=000 {z000 2000 =000 Jso00

7oo0 7000 3000 {7000 Jo00

suLu Jeuun suUL o o

BuL B B B e

Fiee. 2]

2000 {1000 A000 1000 000

2000 fe =000 2000 =000 =000

) 2 =

;-1uuu
= 3 =2 2 2 2 (- = 2

wl WZ w3 w4 5

200U oo

T 1w Tuuu Trouu

(a) Fisher weight map (5 eigen vectors)

Freq. [He]

o
2468102

/o/

==
246810

/e/

(b) Vowels on time-frequency matrix

0
246810

/u/

o -
EEEED

fi/

Figure 7: Fisher weight map for vowels.

In the total phoneme recognition, the highest recognition rate
81.7% was obtained with the moving window width 7' = 7 frames,
the window shift S = 2 frame, the number of eigen vectors
W = 20 (35 x 20=700 dimensions) in the Fisher weight map
and the number of Gaussian mixtures G = 8 in phoneme GMMs.
Compared with MFCC, the recognition rate was lower due to the
recognition degradation of the special phonemes such as /h/, /m/,
/r/, It/, Iw/ and /y/ with recognition rate 45.0%, 48.0%, 31.0%,
58.0%, 66.0% and 57.0% respectively.

Fig.8 shows the dependency of phoneme recognition on the
number of eigen vectors W in the Fisher weight map, the moving
window width T" and the window shift S. From the figure, they
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Figure 8: Parameter dependency in phoneme recognition.

are optimized at W = 20, T' = 7 and S = 2. The number of
Gaussian mixtures GG in phoneme GMM was optimized for each
condition.

6. Conclusion

We described the new feature extraction method based on higher-
order local auto-correlation (HLAC) and Fisher weight map
(FWM). The effectiveness was verified through vowel recogni-
tion with 3 point improvement compared with MFCC. For total
phoneme recognition, at present, the recognition rate is still less
than MFCC. However it will be improved by employing pair-wise
linear discriminant analysis[3].

As future works, we will investigate the noise robustness of the
proposed method because the higher order local auto-correlation
used in the method is thought to be robust for noisy speech recog-
nition. Another plan is to extend the method into HMM expression
and to apply it to the continuous phoneme recognition.

The problem of the method will be lack of the normalization
like CMN and composition of GMM or HMM with noise compo-
nents. We will investigate these problems theoretically as studied
in [4].
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