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Abstract
We propose a novel algorithm to detect disfluency in speech

by reformulating the problem as phrase-level statistical machine
translation using weighted finite state transducers. We approach
the task as translation of noisy speech to clean speech. We sim-
plify our translation framework such that it does not require fer-
tility and alignment models. We tested our model on the Switch-
board disfluency-annotated corpus. Using an optimized decoder
that is developed for phrase-based translation at IBM, we are able
to detect repeats, repairs and filled pauses for more than a thousand
sentences in less than a second with encouraging results.
Index Terms: disfluency detection, machine translation, speech-
to-speech translation.

1. Introduction
Disfluency is common in speech. Detecting disfluency in speech
can be useful for readability of speech transcripts as well as for
further processing by natural language models such as summariza-
tion, machine translation or parsing. We are interested in the re-
moval of disfluency for improving a speech-to-speech translation
system.

We follow the definition of Shriberg [16] and divide disfluency
into three main components: reparandum (the words that are re-
paired), interregnum (filler words or filled pauses) and resumption
(the new set of words that repair the reparandum). In this paper we
detect three types of disfluencies: repeats (reparandum edited with
the same sequence of words), repairs (reparandum edited with dif-
ferent sequence of words) and filled pauses (words in interregnum
region).

Repeats I want to buy three glasses
* three glasses of tea

Repairs I want to buy three glasses
* no five cups of tea

Fillers I want to buy three glasses
* umm four glasses please

Table 1: Example of Disfluencies
Fillers are placed at the interruption point of the speaker’s turn.

Fillers include filled pauses such as ’um’, ’uh’, ’well’; discourse
markers such as ’well’, ’then’, ’you know’ and editing terms. The
filled pauses may serve to signal hesitation or confusion in the
speaker or to signify change in a given topic of conversation de-
pending on the type of filled pause a speaker uses. In Table 1
’umm’ is a filled pause placed at the interruption point ’*’.

Repeats are one of the most common types of disfluencies.
In the above example in Table 1, ’three glasses’ is a repeat. Any
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occurrences of verbatim repetition of a portion of a spoken
rance are ’repeats’.
Repairs may signify confusion in the speaker. In the above ex-
le in Table 1, the speaker is confused if he/she wants to order

ee glasses’ or ’five cups’ of tea. The phrase ’three glasses’ is
randum, which is repaired with ’five cups’ after the interrup-
point. Repairs may also signify hesitation of the speaker.
In this paper we describe our method for detecting filled
ses and reparandum region of repeats and repairs. We describe
ted work in section 2 and our approach in section 3. In sec-
4 we describe our experiments and results and we conclude in
ion 5.

2. Related Work
re has been a significant amount of work in disfluency detec-
[11, 12, 3, 9, 5, 7, 14, 13]. Some of the disfluency detection

ems have been built pertaining to DARPA EARS Rich Tran-
ption program. Most of the disfluency detection systems that

been proposed use combinations of prosodic and lexical fea-
s though some systems are lexically driven [14] without any
of acoustic features. Snover et. al. [14] rely exclusively on
d based lexical information and they have shown that a reason-
performance can be obtained without using acoustic features.
son and Charniak [6] use Tree Adjoining Grammar (TAG)
y channel model and [3] focus on similarity and the length
e repeated sequence of words in the ASR transcripts.
On the other hand Nakatani and Hirschberg [12] have shown
advantages of using acoustic/prosodic features. They suc-
fully detected interruption points (IP) by building a decision
with acoustic features. Shriberg et. al [15] also proposed a

hod of detecting IPs by building a decision tree model based
rosodic features only. [17] improved this system with the ad-
n of hidden event language model (LM) to detect boundaries
various types of disfluencies.
The addition of prosodic features to word based features has
e clear advantages. For example, usually the intonation of a
ker is disrupted at the interruption point that indicates some
of restart. Such information is useful and has been shown to

ignificant [9, 10]. Another advantage of using prosodic fea-
s is its utility in disfluency detection for languages that lack
uate natural language tools.
Liu et. al [10, 11] successfully combined lexical and prosodic
ures and detected the onset of reparandum. Even though the
of combined lexical and prosodic features has some clear ad-
ages, it should be noted that the prosodic features are not al-
s easily available for some specific applications. Especially
online systems such as speech-to-speech translation any addi-
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tional delay added for extra processing of speech signal to obtain
various acoustic features may degrade the overall user experience.
Therefore, in this paper, we will focus on describing the proposed
framework using only lexical features.

3. Approach
We can view the disfluency removal problem as a process that
transforms the “noisy” disfluent transcript into a “clean” one[4, 5].
Such a transformation can be described using statistical machine
translation models. Particularly, Zhou et. al [19] has formulated
a fast phrase-based statistical translation using FST’s for a speech-
to-speech (S2S) translation. We are motivated to apply a similar
framework as [19] to address disfluency detection.

There are several advantages of the proposed scheme. This ap-
proach enables disfluency component to be easily integrated with
other FST-based components such as machine translation engine
by simple FST composition operation providing a unified search
space for disfluent speech translation. Secondly, the proposed
approach obtains very high speed and memory efficiency using
the optimized decoder for phrase-based statistical machine trans-
lation [19], which is several orders of magnitude faster than the
conventional classification based approaches.

3.1. Translation Model

Based on a source channel model approach to statistical machine
translation, translating [1] a foreign token sequence nJ

1 to a target
token sequence cI

1 can be viewed as a stochastic process of max-
imizing the joint probability of p(n, c) as stated in the equation
1

ĉ = argmaxcI

1

Pr(nJ
1 , c

I
1) (1)

The joint probability can be obtained by summing over all the
hidden variables that can be approximated by maximization. For
machine translation purposes these random variables take account
of alignment, permutation, and fertility models.

For our purpose we view disfluency detection as translation
from noisy token sequence nJ

1 := n1, n2, ..., nJ to a clean token
sequence cI

1 := c1, c2, ..., cI . Since the removal of disfluency will
entail removal of words from nJ

1 we still require alignment and
fertility models as I < J .

We simplify the training of our translation model by retokeniz-
ing the cI

1 sequence. Instead of clean speech transcript without any
disfluent words, we append a tag that signifies the type of disflu-
ency for each disfluent word in nJ

1 . This retokenization produces
cI
1 with the same number of words as nJ

1 such that I = J . The re-
tokenization of our previous example of repair in Table 1 produces
the following parallel text.

• Noisy Data: I want to buy three glasses no five cups of tea

• Clean Data: I want to buy REPAIR0 REPAIR1 FP0 five
cups of tea

These modifications to the standard machine translation model
simplify our model in the following ways: i) We do not require
fertility model since the number of words in clean and disfluent
speech are equal and words in noisy speech transcript can neither
go to null nor generate more than one word. ii) With disfluent
words retokenized (I = J) we have a perfect alignment between
the noisy and clean transcripts in the parallel corpora, removing
the need of alignment model.
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The above approaches for simplifying our translation model
ce the data sparsity problems that are abound in machine trans-
n methods. Instead of removing disfluent words all together,

model produces tags describing the type of disfluency that may
seful for further processing by other natural language process-
modules such as detecting intonational boundaries.

Phrase Level Translation

eats and Repairs are difficult to detect because reparandum of
e disfluencies can be more than one word. In our example in
le 1 the reparandum is “three glasses” - a two word phrase.
arandum phrase can be of any length though phrases longer
five words are very unlikely. Word-based disfluency detec-
algorithms have difficulty in detecting such disfluent phrases
use the classifier not only has to classify words as disfluent
ot but also has to detect the start and end boundaries of the
randum. This added complexity in repeat and repair detection
be addressed if we assume that disfluency occurs in phrases.
e we define phrase as a sequence of one or more words, single
d disfluency are also addressed with such phrase assumption.
In order to detect repairs and repeats at the phrase level we
d a phrase level translation model. Our phrase level translation
el is built in a process that is identical to the one described in
u et. al [19]. The methods include techniques for phrase pair
action, the phrase translation model estimation, and the WFST
lementations. The process also includes techniques to deter-
ize and minimize the transducers to optimize the search proce-
. Since our bi-text alignment is a perfect one-to-one mapping,
phrase pair extraction procedure in this study is straightfor-
d, and the only variable to consider is the phrase length limit.
The length limit on the phrase size makes a significant differ-

in the size of the dictionary. We chose a maximum phrase
of five as 99.9% of the disfluent phrase were smaller than five

ds in our training corpus.
We denote the phrase segmentation by introducing a hidden
able pK

1 to the Eq. 2 summing over the joint probability. In
ition, we can approximate the sum over the hidden variables
g a maximum operator.

ĉ = argmaxcJ
1

∑

pK
1

Pr(pK
1 , n

J
1 , c

J
1 ) (2)

≈ argmaxcJ
1

maxpK
1

Pr(pK
1 , n

J
1 , c

J
1 ) (3)

Weighted Finite State Transducer Implementation

can implement our equation 2 using weighted finite state trans-
ers. Using the chain rule we can easily decompose the joint
ability into a chain of condition probabilities as follows, in a

ilar way to [20, 19]:

Pr(pK
1 , n

I
1, c

I
1) = P (cJ

1 ). (4)

P (pK
1 |cJ

1 ). (5)

P (nI
1|p

K
1 , c

J
1 ) (6)

We can compute the conditional probabilities of equations 4,
d 6 by using the parallel corpus and the phrase dictionary.
hermore, we can build WFST for each probability distribution
eling the input and output - L, N and P where L is a language
el, N is the translation model and P is the phrase segmenta-
model respectively.



The arc probabilities for the translation model N are computed
by computing the relative frequencies from the collected phrase
pairs.

P (c|n) =
N(c, n)

N(c)
(7)

where N(c, n) is the number of times a clean phrase c is trans-
lated by a noisy phrase n. The above equation overestimates the
probabilities of rare phrases. In order to take account of such over-
estimation we smoothen our translation probability by performing
a delta smoothing. We add a small numerical quantity δ on the
numerator 7 and add δ.|V | on the denominator where V is the size
of the translation vocabulary for a given phrase.

The language model plays an important role in a source chan-
nel model like ours. Our language model L is a standard trigram
language model with the n-gram probability computed from the
clean corpus that has disfluent words tagged as REPEAT, REPAIR
and FP (filled pauses). In other words, we use the annotated side
of the parallel corpus as the language model training data. We built
a back-off 3-gram language model, and encoded it as a weighted
acceptor as described in [19] to be employed by our translation
decoder.

After building all three types of WFSTs we can perform a cas-
caded composition of these finite state transducers to obtain one
translation lattice that translates sequence of noisy words to a clean
phrases.

T = P ◦ N ◦ L (8)
3.4. Decoding

One of the reasons why WFST-based approaches are attractive is
due to the availability of efficient algorithms for decoding and opti-
mization. In this framework we are able to combine heterogeneous
statistical information with a composition operation of transducers
representing the different knowledge sources. In our case such cas-
caded composition generates a lattice that can segment and trans-
late phrases in a globally optimal framework.

For decoding, we employed the decoder that is developed in
[19] using a multilayer search algorithm. Specifically, we have
one layer for each of the input FSMs: the noisy input/acceptor, the
translation model lattice, and the language model lattice. At each
layer, the search process is performed via a state traversal proce-
dure starting from the start state sr0, and consuming an input word
in each step in a left-to-right manner. This can be viewed as an op-
timized version of on-the-fly or dynamic composition. However,
specialized versions of composition have the advantage of not only
having the potential of being many times faster than general com-
position implementations found in FSM toolkits, but also in incor-
porating information sources that cannot be easily or compactly
represented using WFSTs. For example, the decoder can allow
us to apply the translation length penalties and phrase penalties to
score the partial translation candidates during search. In addition,
they can incorporate new parameter values ( e.g., language model
weight) at runtime without the need for any modification of the
input WFSTs.

3.5. Feature Extraction

One significant disadvantage of using WFST based translation
method is a lack of simple feature based probabilistic training al-
gorithm for WFSTs. Even though Eisner [8] has proposed a train-
ing algorithm for “probabilistic WFST”, it is not an easy task to
add features for parameterization of WFSTs. For example, if we
want to add a feature that defines “if previous word same as the
current one” in the WFST we would need to add self looping arcs
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all the words in the vocabulary adding significant amount of
fusability. It is obvious that any more complicated rule for pa-
eterization would add many arcs to the translation lattice. We
ose a simple method to add such features in our WFST frame-

k.
We limit ourselves to nominal features. We extract nominal
ures for each word and convert them to a binary string. We
end the binary string to the end of each noisy word. For exam-
if f1, f2 were the binary features mentioned above each of our
y word n is appended with f1f2 producing nf1f2

. Adding too
y features can increase data sparsity problems, so we have to
areful on the number and type of features we use.

4. Evaluation
Corpus

tested our method on Penn III Switchboard tree bank corpus.
split our data in a training set of 1221502 words and held out
st set of 199520 words. We performed all of our experiments

anual transcripts. We do not assume that we have sentence
ndaries or interruption point information. But we do assume
we have turn boundaries so that the decoder can handle siz-
chunks of speech without severe memory problems. Since our
el is not a feature-based model, we do not use turn boundary
rmation to extract any feature that may provide unfair advan-
to the model.

For training, we use the annotation for repeat, repair and filled
ses that are provided with the corpus. We convert the switch-
rd annotation to produce a parallel text corpus of clean and
y speech transcripts where all the disfluent words in a noisy
script align with disfluent token IDs. These disfluent token
signify the type of disfluency for the corresponding word in

noisy transcript as shown in the example in Section 3.1. Let us
ne C as the annotated clean corpus and N as the corresponding
y parallel corpus.

Experiment and Results

first extracted two lexical features for all the 1.22 million words
orpus C and appended these feature values to each word, thus
ining a corpus CF. The two features we extracted were “are
of speech tags of any of the next two words the same as the

ent one” and “are any of the next two words the same as the
ent word.” In order to obtain the features based on part-of-
ch, we use an automatic part-of-speech tagger [18]. The train-
corpus had 13287 repair phrases with only 48 phrases longer
5 words. Most of the disfluent phrases are composed of one or
words. 11.8% of all the phrases constitute more than 2 words.
Using the same phrase extraction algorithm in [19] we ex-
ted all the parallel phrases from the corpora N and CF. We
the limit of phrase size as five words. We obtained a phrase
ionary with 2.85 million entries. Each entry consists of a noisy
se, corresponding clean phrase and a probability of its trans-
n. We computed the translation probability as described in

tion 3.3 for each clean and noisy phrase pair. We smoothened
transition probability as described in Section 3.3 with a δ of
.

Type # of states # of transitions
Translation 1,635,398 3,426,379

LM 234,118 1,073,678

Table 2: The Size of the Translation Lattice and LM
We built the WFSTs as described 3.3 and composed them to
uce a noisy to clean speech translation lattice. We built the



language model using the IBM language model toolkit. The size
of the final translation lattice is listed in Table 2.

When we tested our model on our held out test set we obtained
the results listed in Table 3. We tested our method by using the
standard precision, recall and F-measure. The scores were com-
puted at the word level. The train and test data are heavily skewed
with very few positive examples of disfluency. In our test set of
199520 words only 6.93% of words were disfluent so F-measure
is a reasonable metric for the system evaluation.

Disfluency Precision Recall F-measure

3*w/o LM REPEAT 0.695 0.809 0.747
REPAIR 0.479 0.256 0.334

FILLED PAUSE 0.953 0.998 0.975
3*with LM REPEAT 0.743 0.860 0.797

REPAIR 0.509 0.331 0.401
FILLED PAUSE 0.955 0.998 0.976

Table 3: Results on Held-out Test Set

We built two different type of translation lattices to examine
the effects of language model. When we added the language model
(LM) to the translation model that did not have LM information,
the F-measure improved for repeats by 4.9%, precision by 4.8%
and recall by 5.1%. Similarly for repairs, F-measure improved by
6.7%, precision by 3% and recall by 7.5%. The addition of LM
only slightly improved filled pause results signifying that LM is
more critical for detecting repeats and repairs than filled pauses.
We also note that the improvement in F-measure and recall with
the addition of LM for repairs is significantly higher than it is for
repeat, possibly showing that taking account of surrounding word
context is more important for repair detection. F-measure for re-
peat detection is 39.6% higher than F-measure for repair detection
signifying the difficulty of repair detection. We obtain very high
recall of 0.86 and F-measure of 0.797 for repeat detection.

We are able to detect filled pauses with a greater accuracy
than repeats and repairs. We obtain an F-measure of 0.976 for
filled pause detection. One of the reasons that the same translation
model does very well for filled pauses but not for repeat and re-
pairs is because most of the filled pauses are unigrams and a few
set of words constitutes most of the filled pauses. The most com-
mon filled pause in our test corpus was “uh” constituting 82.7% of
all the filled pauses. The least occurring filled pauses were “ah”,
“anyway” that occurred only once.

One of the key advantages of using our method for disfluency
detection is speed. We are able to detect disfluency in one thousand
sentences in less than a second using a memory optimized WFST
decoder developed for phrase-based translation [19].

5. Conclusion
We presented a novel approach that is based on a phrase-level
translation framework for detecting repeats, repairs and filled
pauses. We also proposed methods for simplifying the phrase-level
translation technique by retokenization of words in the speech
transcript such that we do not require fertility and alignment mod-
els. We showed a simple method of incorporating features in a
weighted finite state transducer. Our method only requires parallel
corpora of noisy and clean speech transcripts reducing the amount
of natural language resources needed for disfluency detection. In
addition, using the optimized decoder, our proposed method for
disfluency detection has key advantages of a fast speed and a small
memory footprint, compared to other approaches.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

752

INTERSPEECH 2006 - ICSLP
6. References
Brown, P.F., Pietra, S.D., Pietra, V.J.D., Mercer, R.L., The
Mathematics of Statistical Machine Translation: Parameter
Estimation, Computational Linguistics, Vol.19 No 2

Charniak, E., and Johnson, M., Edit Detection and Parsing for
Transcribed Speech, Proc. of NAACL, 118-126.

Heeman, P.A. and Allen, J.F., Combining the Detection and
Correction of Speech Repairs, Proc. of ICSLP, 363-365.

Honal, M., and Schultz, T., , Correction of Disfluencies in
Spontaneous Speech Using a Noisy Channel Approach, Eu-
rospeech 2003.

Honal, M., and Schultz, T., , Automatic Disfluency Re-
moval on Recognized Spontaneous Speech Rapid Adaptation
to Speaker Dependent Disfluencies, ICASSP 2005.

Johnson, M. and Charniak, E.,, A TAG-based Noisy Channel
Model of Speech Repairs, Proc. of ACL, 33-39.

Johnson, M., Charniak, E., Lease, M., An Improved Model for
Recognizing Disfluencies in Conversational Speech, RT04.

Jason Eisner, Parameter Estimation for Probabilistic Finite-
State Transducers, Proc. of the 40th Meeting of the Associa-
tion for Computational Linguistics.

Kim, J., Schwarm, S.E., Ostendorf, M., Detecting Struc-
tural Metadata with Decision Trees and Transformation-Based
Learning, Proc. of HLT/NAACL.

Liu Y. Shriberg E. Stolcke A., Automatic Disfluency Identi-
fication in Conversational Speech Using Multiple Knowledge
Sources, EuroSpeech 2003.

Liu, Y., Shriberg, E., Stolcke, A., Hilliard, D., Ostendorf,
M., Peskin, B., Harper, M., , The ICSI-SRI-UW MetaData
Extraction System, ICLSP, 2004.

Nakatani, C. and Hirschberg, J., A Corpus Based Study of
Repair Cures on Spontaneous Speech , Journal of the Acous-
tical Society of America, 1603 - 1616.

Spiker, J., Klarner, M., Gorz, G., Processing Self Corrections
in a Speech to Speech System, Proc. of 18th Conference in
Computational Linguistics.

Snover, M., Dorr, B., Richard, S., A Lexically Driven Al-
gorithm for Disfluency Detection, Short Paper Proc. of HLT-
NAACL 2004.

Shriberg, E., Bates, R, Stolcke, A., A Prosody only Decision
Tree Model for Disfluency Detection , Proc. of Eurospeech
1997.

Shriberg, E., Preliminaries to a Theory of Speech Disfluen-
cies, PhD Thesis.

Stolcke, A., Shriberg, E., Bates, R., Ostendorf, M., Au-
tomatic Detection of Sentence Boundaries and Disfluencies
Based on Recognized Words, Proc. of ICSLP 1998.

Tufis, D., and Mason, O., Tagging Romanian Text: A Case
Study for QTAG, A Language Independent Probabilistic Tag-
ger, LREC, 1998.

Zhou, B., Chen, S., Gao, Y., A Memory Efficient Phrase-
based Machine Translation Using Statistical Integrated Phrase
Lattices, To be published.

Zhou, B., Chen, S., Gao, Y., Constrained Phrases-Based
Translation using Weighted Finite State Transducer , ICASSP
2005.


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Sameer Maskey
	Also by Bowen Zhou
	Also by Yuqing Gao
	------------------------------

