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Abstract
Multiple accents are often present in spontaneous Chinese 
Mandarin speech as most Chinese have learned Mandarin as a 
second language. We propose a method to handle multiple 
accents as well as standard speech in a speaker-independent 
system by merging auxiliary accent decision trees with standard 
trees and reconstruct the acoustic model. In our proposed 
method, tree structures and shape are modified according to 
accent-specific data while the parameter set of the baseline 
model remains the same. The effectiveness of this approach is 
evaluated on Cantonese and Wu accented, as well as standard 
Mandarin speech. Our method yields a significant 4.4% and 
3.3% absolute word error rate reduction without sacrificing the 
performance on standard Mandarin speech. 
Index Terms: multi-accent recognition, accent tree, Chinese. 

1. Introduction
Automatic recognition of speaker-independent, natural 
spontaneous speech often needs to handle accents [1]. Accented 
speech is caused by the difference in pronunciation between the 
speaker’s first language or dialect source, and that of target 
speech.  Such difference can be acoustical or phonological.

Most speakers of Mandarin Chinese learned Mandarin 
(Putonghua) as second language, and their pronunciations are 
strongly influenced by their native regional language. Very 
often, there is a multitude of accents present in the 
pronunciation of Mandarin speech by Chinese speakers [2, 3]. 
As a result, ASR systems implemented for processing standard 
Putonghua, perform poorly for non-native accented speech, 
especially when there are multiple accents  

Conventional methods to handle accented speech are to 
focus on modeling phonetic and acoustic changes [2, 3, 4, 5, 6]. 
Phone set extension to include accent-specific units is a 
common way to model phonetic changes. However, the 
extended phone set and augmented pronunciations may 
introduce more lexical confusion in the decoder. Acoustic 
model parameters are commonly modified to model acoustic 
changes in accented speech. This type of approach includes 
retraining acoustic model using a large amount of accented 
speech [2]; applying Maximum A Posteriori (MAP) or 
Maximum Log Likelihood Ratio (MLLR) adaptation to fit the 
characteristics of a particular accent [5, 6]; and using 
discriminative training to refine acoustic models [7]. A major 
weakness in these approaches is that the parameters of acoustic 
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dels undergo an irreversible change, and the models lose 
ir ability to cover other accents.   

In this paper, we propose a method to handle multiple 
ional accents together with standard speech, in a speaker-
ependent scenario. We extend on our previous work on 
ented Mandarin speech recognition [3], by using different 
s of accent-specific units with acoustic model reconstruction. 
diversity of accent changes in multiple accented speech are 
resented by different sets of accent-specific units. The 
ustic model reconstruction is performed at state level 

ough decision tree merge on state-tying triphone ASR 
tem. We focus on two specific major accents in Chinese 
akers – Cantonese and Wu accents.  All speakers are fluent 

andarin while their first language is either Cantonese or Wu. 

2. Multiple Accents in Chinese Speech 
addition to standard Mandarin (also known as Putonghua) 
ken by radio and TV announcers, there are seven major 
guage regions in China including Guanhua (Mandarin), Wu, 
e (Cantonese), Xiang, Gan, Min and Kejia [8]. These major 
guages can be further divided into more than 30 sub-
egories of dialects. 

Table 1 lists the accent distribution of 2412 speakers in 
 HKUST Mandarin Telephone Speech corpus [10]. In 
eral, there are seven Sinitic language groups in China. The 
ond column illustrates general accent distribution of 
ndarin speakers [8]. The third column gives the distribution 
the HKUST corpus. “Unknown” means that the speaker did 
 provide any accent information. 

 Accent 
regions 

Distribution in 
general public 

Distribution in 
the corpus 

Guanhua 70% 77.1% 
Wu 8.4% 8.8% 

Cantonese 6% 8.4% 
Xiang 5% 2.2% 
Gan 2.4% 1% 
Min 4.2% 1.7% 

Kejia 4% 0.3% 
Unknown -- 0.45% 

ble 1: Mandarin accent distribution. 

In addition to lexical, syntactic and colloquial differences, 
 phonetic pronunciations of the same Chinese characters are 
te different between Putonghua and other Sinitic languages. 
guists have shown, for example, that only 60% of Cantonese 
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and 70% of Wu pronunciations are even close to Putonghua 
pronunciations [8]. Therefore, although Putonghua is widely 
spoken in China, its pronunciation is still strongly influenced by 
the native language of the speaker. Speakers who have lived in 
several geographical regions also tend to have mixed accents. 
This type of accent variations is obviously beyond straight 
forward phone changes.

In Chinese ASR systems, initial and final units are 
commonly used as subword units instead of phonemic units [2, 
3, 4]. There are 21 initials and 37 finals for Putonghua in 
contrast to 19 initials and 53 finals in Cantonese and 35 initials 
and 32 finals in Wu dialect [8]. All initials consist of a single 
consonant. However, the initial inventories for Putonghua and 
two other languages are distinct. For example, in contrast to 
Putonghua initials, Cantonese initials do not have retroflexed 
affricatives (e.g., ‘zh, ch, sh, r’), and has one additional velar 
nasal ‘ng’. The structure of Cantonese finals is more complex 
than that of Putonghua. Cantonese finals have six different 
consonant codas (‘m’, ‘n’, ‘ng’, ‘k’, ‘p’ and ‘t’) in contrast to 
the two codas ‘n’ and ‘ng’ in Putonghua finals. Wu dialect 
initials do not have retroflexed affricatives either. The 
pronunciations of ‘zh, ch, sh’ are moved to ‘z, c, s’, but the 
pronunciations are not completely the same as the Putonghua ‘z, 
c, s’s. In addition, voiced initials in Wu include more phonetic 
changes compared to Putonghua. For finals, there is no 
pronunciation difference between ‘n’ and ‘ng’, and the number 
of monophthong is larger than that of Putonghua (e.g., the 
monophthongs ‘ai’ and ‘ei’ in Putonghua are changed to ‘a’ and 
‘e’ in Wu).

Consequently, Cantonese and Wu speakers often have 
difficulty pronouncing some basic Putonghua initials/finals, 
which leads to pronunciation changes. The standard Putonghua 
initial set cannot represent the actual pronunciations in accented 
speech. In an extreme case, if the speaker’s pronunciation is 
affected by both Cantonese and Wu dialects, the pronunciation 
of ‘zh’ can distributed over the entire range between ‘zh’ and 
‘z’. Hence, a more powerful acoustic model is required to 
account for the flexible pronunciation changes in multi-accent 
speech.  

3. Multi-Accent Modeling 
To model each accent individually, we use iterative dynamic 
programming (DP) alignment to “recognize” accent-specific 
units automatically from accented speech data. The phone 
models were bootstrapped from standard speech. We apply the 
likelihood ratio test to obtain “reliable” accent-specific units. 
This accent unit generation process is performed on each 
regional accent data. Finally, the original standard speech model 
is reconstructed into a multi-accent model through the use of 
accent-specific unit models to cover pronunciation changes.  

3.1. Accent-specific units 
We use automatic phone recognition with free grammar 
together with DP alignment to generate a set of accent-specific 
units. In phone recognition, the decoding formula is  

BXPBPB
B

|maxarg*    (1) 

where B  is the canonical phone sequence, and X  is the input 
speech vectors. Due to accent effects, some standard initial and 
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al units cannot be pronounced correctly. Eq.1 needs to be 
ritten by taking accented changes into consideration. 

ppose a certain initial or final unit is pronounced in several 
ys in different accents. The output phonetic sequence 
luding alternative representations forms surface form 
uence S . Then the decoder formula becomes 

BSPSBXPBPB
SB

|,|maxarg*  (2) 

ere BP  is the language model, SBXP ,|  is the acoustic 
del, and BSP |  is the pronunciation model. In general, the 
ustic model generation procedures assumes that 

BXPSBXP |,|    (3) 
at means the acoustic model is based on canonical 
nscriptions and standard speech. If surface form 
nscriptions are available, the acoustic model training can be 
ressed as 

SXPSBXP |,|    (4) 
ich means the acoustic model is based on alternative 
nscriptions and accented speech. Obviously, both BXP |

SXP |  are sub-optimal acoustic models if accent 
nges are considered. Ideally, both of them should be taken 

o account for acoustic model generation. In Eq.2, the 
bination of B  and S  is called an accent-specific unit and 

SBX ,|  is called the accent-specific model.
The DP alignment is performed iteratively on different 

s of accented speech, to generate accent-specific units as 
wn in Fig. 1. We use likelihood ratio test as a confidence 
asure to select the more reliable accent-specific units [3],  

Cantonese and Wu accented data are put into phone 
ognition individually to obtain the respective accent-specific 
t sets. There are 18 selected accent-specific units for initials 
Cantonese-accented speech, and 16 selected ones for Wu-
ented speech. Note that although some pairs occur in both 
es of Cantonese and Wu accented data (e.g., zzh ), the 
dency of the change and the corresponding acoustic 
ameters are distinct for different accents.  
Word

nscriptions Dictionary
Standard

Initial/Final set

Canonical
transcription

Alternative
transcription

Automatic
phone

recognition

Pre-trained
acoustic model

Specific
accented data

Recognized
phone sequence

 DP alignment

 Accent-specific
units

Step 1 Step 2

Step 3

Log likelihood
ratio test

 Selected accent-
specific units

Step 4

. 1: The procedures of generating accent-specific units. 



3.2. Auxiliary accent trees
We use decision tree based state tying for context-dependent 
triphone models [9] in our system. The selection of the question 
set, the size of decision trees and the selection of central units 
are key issues in decision tree based state tying.  

In our system, the structure of triphones of accent-specific 
units is similar to that of standard triphones except for the 
central unit. The former is an accent-specific unit, and the latter 
is a single initial/final unit. Decision trees for accent-specific 
triphone units are called auxiliary accent trees as opposed to 
standard decision trees of standard triphones. Compared to 
standard decision trees, auxiliary trees are also phonetic binary 
trees in which a yes/no question is attached to each node. On the 
other hand, the question set for these accent trees is enlarged to 
include the accent-specific units. The tree size is smaller than 
that of standard decision trees due to fewer training samples. 

The parameters of accent-specific triphone units are 
initialized from original pre-trained context-independent 
initial/final models ib  and context-independent accent-specific 

unit model _i ib s , and are re-trained using different 
transcriptions.

_i i ib b s    (5) 

_ _i i i ib s b s    (6) 

1 1_ , _ ,i i i i i ib s b b s b   (7) 

1 1 1 1, _ , , _ ,i i i i i i i ib b s b b b s b  (8) 

where  is the starting HMM model set and  is the re-
estimated HMM model set. Initial parameters of _i ib s  are 

cloned from ib  and re-estimated using the BW algorithm 
with transcriptions in terms of standard initial final units as well 
as accent-specific units. Similarly, the initial model of 

1 1, _ ,i i i ib b s b  is cloned from _i ib s  and re-
estimated with triphone transcriptions. 

3.3. Reconstruction of acoustic models 
An individual set of auxiliary accent trees is constructed for 
each specific accent (e.g. Cantonese or Wu).  The structure, the 
shape and the size of the auxiliary accent trees are unique to 
each accent even when the central unit is shared between 
different accent groups (e.g., when the central unit ‘zh_z’ 
appears in both accents). 

Leaf nodes of decision tree represent tied-states in tree-
based clustering ASR system. Hence, acoustic model 
reconstruction is equivalent to tree merge between auxiliary 
trees and standard decision trees as described in Fig.2. 
Determined by the minimum distance measure between tied 
states, leaf nodes from auxiliary accent trees are merged into the 
relevant modes of standard decision trees. More than one 
auxiliary accent trees can be attached to one standard decision 
tree, representing different accent changes. Following this tree 
merge the pre-trained acoustic model is reconstructed, and 
includes Gaussian mixture distributions from the standard 
model as well as those “borrowed” from accent-specific 
triphone models. As a result, the structure and the shape of the 
Gaussian distribution are adjusted. Additional Gaussians from 
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 states of the auxiliary trees are moved to the distribution 
ndaries to cover pronunciation variations from multiple 
ents. 

ST_4_1

ST_4_2

ST_4_3 ST_4_4

ST_4_5
ST_4_6

conventional tree b[4]auxiliary tree zh_j[4]

auxiliary tree zh_z[4]

STF_4_1

ASTF_4_
2

ASTF_4_
3

ASTF_4_
4

ASTP_4_1
ASTP_4_2

ASTP_4_
3

ASTP_4_4

rom accent-specific unit set of
Cantonese

From accent-specific unit set of Wu

ASTP_4_5

. 2: Model reconstruction through decision tree merge. 

In this approach, accent trees are only used during the 
te-tying procedure for accent-specific unit models, but not in 
 model estimation and decoding steps. That is, the structure 
standard decision trees, the decoding complexity as well as 
oding dictionary and recognizer are unchanged. There is no 
dification in the decoding procedure. More importantly, each 
iliary accent tree is uniquely attached to a single standard 
ision tree, so no model confusion is introduced. On the other 
d, several different auxiliary trees can be attached to one 

ndard decision tree to cover more types of accent changes. 
reover, since the model reconstruction is performed at the 

te level, a wide range of accent changes which cannot be 
resented at the phone level are thereby covered. 

4. Recognition Experiments 
 evaluate our approach in a Chinese telephony short phrase 
ognition task. There is no word n-gram in these short phrases 
that we can isolate the effect of our approach without the 
luence from higher level information.

All speech data were sampled at 8 kHz and 8 bit-rate. The 
eline acoustic model was trained using 50 hours of 

tonghua speech including 100 speaker’s utterances (each 
aker has 200 utterances). The HMM topology is three-states, 

t-to-right without skips. The acoustic features are 
MFCC , MFCC13  and MFCC13 . Twenty-one 
ndard initials and 38 finals were used to generate context-
ependent HMMs. We used HTK decision tree based state 
ng procedures to build 12 Gaussian-component triphone 
dels with 5500 tied-states. 2000 continuous utterances with 
685 syllables from 20 Cantonese-accented speakers (Dev1) 
 20 Wu-accented speakers (Dev2) were used to extract two 

s of accent-specific units. The test data consists of three parts: 
st1 includes 900 Cantonese-accented utterances from 9 
akers (4 females and 5 males), excluded from Dev1; Test2 
ilarly consists of Wu-accented utterances; Test3 is used for 
formance comparison and consists of 900 Putonghua 
erances selected from 9 native speakers. Speakers were 
tructed to speak the same phrases  in these three sets.  

Using log likelihood ratio test as confidence measure, 45 
 39 accent-specific units for Cantonese and Wu accented 
ech were extracted from the initial 8756 mapping pairs from 
v1 and Dev2 sets. Using the HTK state clustering approach, 
 constructed 135 auxiliary accent trees with 875 tied-states 



and 117 auxiliary accent trees with 613 tied-states for 
Cantonese and Wu accent-specific triphone units, respectively. 
Through model reconstruction, all the auxiliary accent trees 
merged to the pre-trained standard model with 5500 tied states 
of 177 standard decision trees. The reconstructed model 
included 83,856 Gaussians and each state has 15.2 Gaussians on 
average. To make a fair comparison, we generated an enhanced 
acoustic model with 5500 tied-states and 15 Gaussian-
component per state. The recognition performances are 
compared in Table 2. 

Word Error Rate (WER) % 
System Test1

Can. accent 
Test2

Wu accent 
(Test3) 

Standard
speech

Baseline 20% 12.7% 7.9% 

Baseline HMM + 
Pronunciation dictionary 

17.9% (-2.1) 11.1% (-1.6) 7.6% (-0.3) 

Enhanced HMM 
 with 15 Gau. per state 

18.6% (-1.4) 12.4% (-0.3) 7.5% (-0.4)  

Baseline HMM with 
MAP using Dev1 

15.1% (-4.9) 15.8% (+3.1) 15.7% (+6.8) 

Baseline HMM with 
MAP using Dev2 

24.2% (+4.2) 9.1% (-3.6) 14.1% (+6.2) 

Reconstructed HMMs  15.6% (-4.4) 9.4% (-3.3) 7.2% (-0.7) 

Table 2: Lower WER for using reconstructed model compared 
to using MAP adaptation and augmented dictionary 

Table 2 shows that accents have a great adverse impact on 
recognition accuracy if the acoustic model is trained from just 
the standard speech data. The second system shows that 
augmented dictionary with multiple pronunciations [2, 4] can  
cover some accented changes and gives an absolute 2.1% and 
1.6% WER reduction on Test1 and Test2. More significantly, 
we can see that the reconstructed acoustic model gives a 
significant 4.4% and 3.3% absolute WER reduction compared 
to the baseline, and an additional 3% reduction with respect to 
using enhanced HMM at the same model complexity. This 
result indicates that the adjusted mixture distribution structure 
of the reconstructed model is robust enough to cover accent 
changes at different levels. On the other hand, directly 
increasing Gaussian components in the model results in poor 
estimation of some Gaussians when the training data is limited. 
In another experiment, we used Dev1 and Dev2 as adaptation 
data, and applied MAP adaptation on the baseline model. This 
approach gives a good 4.9% and 3.6% WER reduction on 
Cantonese and Wu accented speech, but led to serious 
performance degradations (6.8% and 6.2% WER increase) on 
native Putonghua speech. The adapted model using Dev1 
Cantonese-accented data also leads to 3.1% performance 
degradation tested on Wu-accented speech, and vice versa. 
Through MAP adaptation, the acoustic parameters are 
irreversible changed to cater for accented speech and are no 
longer suitable for Putonghua speech. However, our 
reconstructed model includes its own Gaussians from standard 
speech acoustic model as well as those borrowed from different 
accent-specific unit models. The borrowed Gaussians are used 
only to adjust the structure of original mixture distribution and 
not to change the parameters. By jointly using these Gaussian 
distributions we are able to cover the diversity in multiple 
accents without sacrificing the performance on standard speech. 
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5. Conclusions
 have described an approach of acoustic model 
onstruction for multi-accent speech recognition. In order to 
ferentiate between multiple accents, different sets of accent-
cific units were generated individually based on data-driven 
thod. We generated auxiliary accent trees for accent-specific 
hone units, and merge them with standard speech decision 

es for acoustic model reconstruction under a context-
endent triphone framework. This approach adjusts the 
cture of the original mixture distribution in the standard 
ech models without changing model parameters, thereby 

proving model robustness and resolution to cover accent 
iability. Experimental results show that our proposed 
roach provides a significant 4.4% and 3.3% absolute WER 
uction for Cantonese and Wu accented speech, a superior 
formance to other approaches. Compared to MAP adaptation, 
 method performs equally well on a particular accent without 
rificing the performance on other accents.  Our approach is 
licable to speaker-independent systems handling multiple 
 mixed accents.   
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