
Automatic Detection of Irregular Pho

Srikanth Vishnubhotla and C

Institute for Systems Research and Dept. of E
University of Maryland, College 

{srikanth, espy}@gl

Abstract
Voice quality is one of the most important source characteristics 
of a speaker’s speech production process, and creakiness is one 
of the variations of voice quality. This paper describes the 
development of an algorithm to automatically detect irregular 
phonation, including creakiness and other variations, in 
continuous running speech. The algorithm is an extension of the 
Aperiodicity, Periodicity and Pitch (APP) Detector. The 
algorithm has been run on 485 files of the TIMIT database, 
which contained 677 instances of irregular phonation. The test 
set comprised of 97 speakers, of which 57 were male and 40 
were female. The algorithm has been found to give an accuracy 
of 86.7 % on average, with performance being almost the same 
for both male and female speakers. Automatic detection of 
irregular phonation should help characterize speakers for 
speaker identification applications. 
Index Terms: irregular phonation, creakiness, voice quality, 
speaker recognition, speaker characterization 

1. Introduction 
Speakers have a certain characteristic quality to their voice, 
which is a consequence of their style of phonation, and thus, 
their individual source properties. This kind of voice quality is 
perceived by listeners as the breathiness, creakiness, harshness 
etc., of the voice. While some speakers exhibit a particular voice 
quality throughout their speech, some others show either a 
continuous or an abrupt change in their voice quality. The 
variety in voice quality is a well-studied phenomenon, and 
researchers from various disciplines like speech processing, 
voice pathology, phonetics, linguistics and music have 
examined the various aspects of phonation. [1,2,3,4]. 

In this study, we focus on one of the variations of voice 
quality, namely irregular phonation. We define this particular 
category to comprise of sounds that various researchers from 
different disciplines have called creak, vocal fry, diplophonia, 
diplophonic double pulsing [1], glottalization [2], 
laryngealization [3], pulse register phonation [1], and glottal 
squeak [2]. We rely on the work in [1] that has shown that most 
of these phenomena are all perceptually similar to each other, 
and can thus be classified together.  
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The most common example of irregular phonation is the 
ak. A perceptual definition for creak is [4]: “the acoustic 
lt of a creak is a series of irregularly spaced vocal pulses 

t give the auditory impression of a rapid series of taps, like a 
k being run along a railing”. Figure 1 is a spectrogram 
wing three instances of creakiness in an utterance, at time 
rvals as indicated in the caption. The rather high, irregular 
cing between consecutive vocal pulses – a characteristic of 
ak – is seen as vertical striations at those locations. We 
ine our task as the “automatic detection of all sounds that fall 
his perceptual category of irregular phonation” and will use 
 terms creak and irregular phonation interchangeably here. 

The task is to automatically detect any of these varieties of 
gular phonation. This is especially important in present-day 
aker identification systems, since speaker identification relies 
the reliable extraction of both the source and vocal tract 

tures [5]. The work presented here is particularly useful in 
racterizing the voice quality (or equivalently, the source 
rmation) of a speaker, by distinguishing it from the modal or 

athy kinds of speech. In addition to speaker identification, 
 work can contribute to the task of language identification, as 
can aid to identify a variety of languages that exploit 
akiness and breathiness to articulate certain sounds [4]. 
tomatic identification of irregular phonation can also aid in 
 study of phonetics and voice pathology. 

We have developed an algorithm that can process an input 
ech file and automatically identify regions of the signal 
ere the speaker exhibits irregular phonation. The algorithm is 
extension of the Aperiodicity, Periodicity and Pitch (APP) 
ector [6], a system that processes a speech file on a frame-
frame basis to give a spectro-temporal profile indicating the 
ount of aperiodicity and periodicity in different frequencies 
h time. Currently, the APP Detector does not distinguish 
ween aperiodicity due to turbulence from that due to irregular 
nation. We modified the APP Detector to separate these 
erent classes of aperiodicity. 

This paper gives a description of the algorithm and its 
formance. Section 2 of this paper discusses the APP Detector 
brief, to lay the background for the algorithm. Section 3 
usses the algorithm, and the features of irregular phonation 
Figure 1: Spectrogram of a sample speech file containing creakiness in three different location (marked by arrows): t=0.6 to 0.7 sec, 
t=1.8 to 1.9 sec and t=3.1 to 3.2 sec. The x-axis shows time in seconds. 
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that have been considered for design. Section 4 describes the 
performance of the algorithm, and section 5 concludes the 
paper, outlining the future work briefly. 

2. The Aperiodicity, Periodicity and Pitch 
(APP) Detector 

The APP Detector [6] estimates the proportion of periodic 
and aperiodic energy in a speech signal, and the pitch period of 
the periodic component, on a frame-by-frame basis. In brief, the 
first block in the APP Detector is an auditory gamma-tone filter-
bank that splits the channels into 60 frequency bands. The 
outputs of the higher frequency channels are then smoothed 
using the Hilbert transform to extract the envelope information 
and remove the finer structure. The next stage of the APP 
Detector incorporates silence detection by thresholding, 
followed by the use of the Average Magnitude Difference 
Function (AMDF) to identify the amount of periodicity or 
aperiodicity in the signal.  

For each frame, a windowed portion of the signal, centered 
at the frame center, is used to compute the AMDF. The AMDF 

n[k] of a signal x[n] is defined as 

[ ] [ ] [ ] [ ] [ ]
n

m

k x n m w m x n m k w m k

where w[n] represents a rectangular window centered at n and 
having a width as specified. When the speech signal is periodic, 
this function will contain dips at values of k equal to a multiple 
of the pitch period.  Figure 2 contrasts a sample AMDF function 
from a single channel of a strongly periodic signal with that of a 
strongly aperiodic signal. The vertical lines superimposed on the 
figure represent the strength of the dips. The noteworthy 
features are that (i) the AMDF shows strong dips at lags 
equivalent to the pitch period and its multiples in the case of a 
strongly periodic signal, (ii) the dips are weaker and very 
randomly distributed in the strongly aperiodic case. 

Decision of periodicity and aperiodicity of the frame is 
made by summarizing the trend across all channels. For a 
periodic frame, it is expected that all non-silent channels will 
exhibit a similar trend in the AMDF dips. Thus, when the dips 
are summed across all channels, the dips will cluster tightly 
together at lags equaling the pitch period and its integer 
multiples, and give a significant strength of dips. If this is the 
case for a particular frame, then that frame is classified as being 
periodic. For an aperiodic frame, the dips, when summarized, 
will display a random behavior as a consequence of the 
individual channel behavior. The summary measure of periodic 
and aperiodic content is obtained by multiplying the frame 
per/aper decision by its energy and then adding it across 
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Figure 2: AMDF and Dip Behavior for a periodic 
signal (left) and aperiodic signal (right)
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nnels. Thus, for each frame, a decision of per/aper is made 
the frame, its individual channel-wise per/aper profile is 

duced, and the amount of aperiodic and periodic energy is 
 obtained.  

Figure 3 gives an illustration of the dip summary (or profile) 
the cases of a single frame of a vowel, an unvoiced fricative 
oiced fricative and a creaky vowel. The vowel, being a 
iodic signal, shows strong dip clusters at multiples of pitch 
iod. The unvoiced fricative displays a random distribution of 
ll dips. In the case of the voiced fricative, the dips show a 
ed behavior – there is clustering of some dips, which is due 
he voiced (glottal) source, and there is also some randomness 
istribution of some other dips, which is due to the turbulence 

the supra-glottal source. The fourth dip profile belongs to a 
aky frame. Because of the irregular phonation which causes 
 pitch to change over consecutive frames, the AMDF does 
 show a regular behavior. This is due to misalignment 
ween the windowed signal and its delayed version, which 
ses the dips to scatter from their cluster. The clusters are thus 
 as well defined as in the periodic vowel, and yet not as 
domly distributed as will be due to a turbulent source. It is 
 kind of dip profile that we target to identify from others. It 
orthy of interest that the number of clusters in the frame 

e halved from the periodic case, as is expected due to the fall 
itch occurring in a creak. 

A noteworthy fact is that the APP Detector is indeed 
turing the source information from the signal. An illustrative 
mple is the comparison of the APP Detector output for the 
e of a vowel utterance by the same speaker in a modal and a 
aky voice. Figure 4 shows the spectro-temporal per/aper 
file – a visual display of periodic and aperiodic channels for 
secutive frames for these two cases, as obtained by the APP 
ector. It is seen that the creaky vowel displays aperiodic 
rgy during the majority of the vowel. This is due to the fact 
t creakiness arises due to irregular vocal fold vibration, 
ich is not periodic in nature. Figures 4 (c)-(e) show the time 
eform, the corresponding glottal waveform obtained by an 

erse filtering technique [7] and the corresponding AMDF 
ained by the APP Detector for a frame of the modal and 
aky vowels. The most striking point here is that the AMDF 
sely captures the information in the glottal waveform – this is 
dent in the relative position of the peak of the glottal 
eform and dips of the AMDF in the case of the modal 
el. This correspondence is not so exact for the creaky 

(a)

(c) (d)

Figure 3: Comparison of the dip profiles for the vowel 
frame (a), fricative frame (b), voiced fricative frame (c) 
and creaky voicing frame (d).The x-axis represents lags, 

and the y-axis represents strength of dips 

(b)



vowel, owing to the fact that the pitch shows some jitter and 
thus, the AMDF does not have exact alignment of the signal and 
its delayed version to give dips at exactly the pitch period. This 
is what causes the AMDF to have dips that are weak and do not 
cluster properly, and are not in alignment with their counterparts 
from other channels. One may therefore conclude that the APP 
Detector is indeed capturing the source information and is a 
very suitable candidate to use to identify irregular phonation.  

3. Automatic Detection of Irregular 
Phonation

The decision process of the APP Detector for frames with 
irregular phonation can be traced to their dip profile. Separating 
irregular frames from periodic frames is an easy task – the APP 
Detector shows periodicity for all frames that have modal 
phonation – thus, such frames can be eliminated from further 
analysis by conditioning on the periodicity measure. 

To distinguish the irregular phonation frames from aperiodic 
frames, the amount of aperiodicity in the highest frequencies is 
seen. It is expected that fricatives will have high amount of 
aperiodicity in the higher frequencies (above 3000 Hz) due to 
turbulence, while irregular phonation frames do not have such 
high-frequency aperiodicity. Thus, it is conditioned that the 
algorithm eliminates frames showing aperiodicity in all channels 
above 3000 Hz. The next step is to characterize the dip profile 
that is unique to non-modal phonation. This is done by finding 
all the local maxima in the dip profile, and eliminating all those 
maxima that lie too close to each other. This is done in order to 
ensure that the corresponding pitch estimate remains below 150 
Hz, as expected for irregular phonation. The local maxima are 
then defined as cluster centers, and loose clusters are formed 
around these centers. A score is made of how many of the 
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Signal with Irregular 
Periodicity (Creaky Vowel) 

Signal with Strong 
Periodicity (Modal Vowel) 

Figure 4: Modal vowel versus creaky vowel: spectrogram 
(a), aperiodicity/periodicity spectro-temporal profile (b), 
section of the time waveform between t=0.1 to 0.2 sec for 
the modal vowel and t=0.28 to 0.38 for the creaky vowel 
(c), glottal waveform obtained by inverse filtering (d) and 
AMDF corresponding to the above glottal waveform, for 
one of the  channels. 
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nnels have their dips lying within these clusters defined by 
 cluster center, and this is called the channel confidence. The 
ster center is then recalculated, using only those channels 
ich have their dips lying within the cluster. Redefining the 
sters, the channel confidences are calculated again. The 
nnel confidence is then summarized across frequency, and if 
east 50% of the channels show confidence 1, the frame is 
lared to have the characteristic dip profile. 

We observed that by this stage, the majority of the frames 
ected had irregular phonation, but we were also detecting 
e breathy vowels and voiced fricatives. This can be 
lained by the fact that similar to the irregular phonation, the 
athy vowels and voiced fricatives have some underlying 
iodic energy because of voicing. To eliminate the breathy 
nds and voiced fricatives, we exploited the fact that the 
cing in these two cases will often be in frequencies 0 – 1000 
 while irregular phonation is expected to show its 
racteristic irregularity at all frequencies. Thus, the dip 
files are obtained by summarizing across only those channels 
t span frequencies above 1000 Hz. We further reduce the 
sibility of capturing turbulence by conditioning the ratio of 
ber of dips present within the cluster, to the number of non-

o dips, to exceed a threshold of 40%. For frames with 
gular phonation, the aperiodicity is not random Therefore the 
ber of non-zero dips lying inside the cluster will be higher 
pared to the cases of breathiness and voiced fricative, which 

w random aperiodicity and hence will have a large number 
ips outside the cluster. 

Our algorithm also showed some confusion with some 
s, though this was the case with only certain speakers and 

 for all stops for that speaker. In order to handle this issue, 
made use of the spectral slope of the frame by taking a 
tral portion of each frame and calculating the slope of the 
ctrum between frequencies 2000 to 4000 Hz by fitting a line 
g Minimum Mean-Square Error (MMSE) criterion. The 

ctral slope for stops is expected to be very low due to their 
ter spectrum. Thus, a threshold of -0.05 is used to distinguish 
ween the two. However, we also speculate another reason for 
 detection of stops in our algorithm, and this will be 
ussed in the results section. 

4. Experiment & Results 
 have no available standard database that can be used for 
cribing voice quality and testing the performance of the 
orithm. We therefore made use of the TIMIT database that 
 been studied and hand-marked for irregular phonation at 
T, to test our algorithm. Since there is no clearly defined 
rence that marks phonation, we have called all those 

ations marked in the reference, as well as those identified by 
 algorithm but missed in the reference (confirmed by visual 
ection by the first author), as the total number of instances 

rregular phonation. False alarms have first been investigated 
looking at the transcriptions for obvious cases, and by visual 
ection of files in cases that are unclear or ambiguous. 

antitatively, both the accuracy and false alarm rate are 
ntified in terms of the percentage of total number of instances 
t are irregular phonation.   



We made use of the “test” subset of the TIMIT database. 
The number of files processed was 485, and it included 57 male 
and 40 female speakers from 5 dialect regions (dr1 through dr5). 
The total actual number of instances of irregular phonation was 
677. Table 1 shows our results. A sample output of the Irregular 
Phonation Detector is shown in figure 5. The input is the speech 
file shown in figure 1. It may be seen that all three creaky 
regions have been identified by our algorithm. 

Table 1: Performance of the algorithm for detection of 
irregular phonation

  Total # of 
instances 

# of instances 
identified 

Percentage 
identified 

Male + Female 677 587 86.7 % 
Female 312 276 88.5 % 
Male 365 311 85.2 %  

The percentage of instances identified, 87%, seems an 
encouraging figure, considering the fact that identification is 
made during continuous running speech and in the presence of 
various confusing elements. Both female and male samples are 
handled equally well by the algorithm, which confirms that 
irregular phonation possesses acoustic features that do not 
depend on gender [3]. We investigated the cases of the missed 
instances, and found that we were missing the irregular 
phonation in one of two cases. The first is when the location of 
irregular phonation is at the very beginning of the file – this is 
because the AMDF can be computed only after a few initial 
frames. This will be remedied by refining our conditions for 
boundaries. The next case is when the pitch falls so low that the 
analysis window used cannot capture even one full cycle – when 
that happens, the AMDF structure cannot capture the 
characteristic dip profile. A solution for this is to adaptively 
change the analysis window size. 

The false detection rate, however, seems higher than the 
error rate. We had a false detection rate of 20%, and these were 
mostly due to stops. Confusions were more for male speakers 
than female speakers, and this is attributed to the low pitch of 
male speakers, which may often cause the dips to scatter from 
clusters and thus manifest the sound as being similar to irregular 
phonation. Of all these false triggers, 25% were due to voiced 
fricative /sh/. About 35% of the false detections were due to 
stops being called irregular, while the remaining 40% of the 
false triggers were due to stops wherein the vowel preceding the 
stop was identified as creaky. Though we have currently 
included the detections in the latter category as false detections, 
studies have shown [2,4] that there do exist cases of stops in 
both American English and other languages, where both voiced 
and unvoiced stops may be accompanied by irregular phonation. 
Further, it is possible that the end of vowels preceding such 
stops may also exhibit irregular phonation. Thus, it may actually 
be the fact that we are capturing such instances of irregular 
phonation too, in which case our false triggering rate will 
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ally be considerably low. In addition, we have also observed 
t we are identifying what we suspect are some glottal squeaks 
nstances). However, due to the lack of a standard reference, 
are not able to confirm our speculations at this juncture, and 
e added this count to false triggers. 

5. Conclusion & Future Directions 
 have discussed our algorithm for the automatic detection of 
gular phonation in continuous speech. The algorithm is seen 
show good recognition rate of 87% on continuous running 
ech. We show a false-triggering rate of 20%, but are also 
culative that our false alarm rate is lower than the figures 
sented. We plan to continue our work by using a standard 
rence database to verify the performance of our algorithm, 
 improving the recognition rates by tackling the two 
blems discussed in the paper. We eventually plan to work 
ards the development of a creaky voice quality parameter 

t can be used for speaker recognition applications. 
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