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Abstract
In this paper, we first analyze the problems of speech and noise
contamination process in noise-masking point of view, and pro-
pose a new approach to estimate degree of noise masking effect
on clean speech distribution model based on sequential noise esti-
mation. Sequential noise estimation is performed frame-by-frame
using interacting multiple model (IMM) algorithm, so that real-
time implementation is possible. After applying IMM algorithm,
degree of noise masking effect named as noise masking proba-
bility(NMP) is calculated. Estimation of clean speech spectrum
in noisy environments is performed by controlling the advantages
of log spectrum domain and those of linear spectrum domain al-
gorithm based on NMP. We have performed recognition experi-
ments under noise conditions using the AURORA2 database which
is developed for a standard reference of speech recognition per-
formance. Simulation results show that this approach is effective
when noise masking effect is dominated at low SNR.
Index Terms: speech recognition, feature compensation, noise
masking probability.

1. Introduction
Noise degrades significantly the performance of speech recogni-
tion system running in real conditions. The performance of speech
recognition systems degrades seriously if there exist background
noise, channel distortion, acoustic echo or a variety of interfering
signals. So one of the key issues in practical speech recognition
is to achieve robustness against the mismatch between the training
and testing environments [1]. Methods for obtaining noise robust-
ness are classified into two types. One adapts the acoustic models
in the recognizer to any kinds of noises based on model adaptation
techniques [2]. The major disadvantage for these kinds of methods
is that they need a huge computational load with large vocabulary
speech recognition systems. The other is enhancing the feature
vectors based on noise reduction techniques before they are fed
into the recognizer [3]. An easiest way to alleviate the recogni-
tion performance degradation is to employ a feature compensa-
tion technique in which the input speech features are compensated
before being decoded by the recognition models trained on clean
speech. In this paper, we will focus on latter approach to obtain
robustness against the environment in which the clean speech is
corrupted by any background noise.

In the context of feature compensation, a variety of approaches
have been developed. One of the successful approaches to fea-
ture compensation applies piecewise linear approximation to the
speech contamination procedure defined in the feature vector do-
main [4, 5]. Even though this approach has been found effective
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gh signal-to-noise ratio (SNR) regions, it usually causes much
neous estimates when the instantaneous SNR is low.[6]. In or-
to overcome this problem, Kim et al. proposed an approach
h combines two separate compensation techniques [7]: the
tral subtraction (SS) and interacting multiple model (IMM)
rithms. In this approach, which is referred to as the soft de-
n IMM (SDIMM) algorithm, the speech absence probability

P) is computed by the SS module, and it is applied to control
switching between the two compensation methods. The IMM
rithm utilizing a detailed clean speech distribution dominates
stimation in the active speech regions while the SS algorithm
ides a stationary estimate during the non-speech periods.
Since, however, SAP is computed by the SS method which

not have any prior knowledge of the clean speech distribu-
, it is likely to make a wrong decision especially when either
noise or speech characteristics are time-varying. For that rea-
it is considered desirable to compute the SAP by means of an
rithm which employs a more precise model for clean speech
re distribution. Moreover, it is generally known that the fea-
vector components which are masked by the noise are respon-
for the performance degradation of the speech recognizer in

rse environments. In this paper, we analyze the problems of
ation from noise-masking clusters and propose a novel ap-

ch to measure the noise masking effect by taking advantage of
tailed clean speech distribution. For each feature vector com-
nt, we compute the noise masking probability (NMP) which
unts for how much the current component is masked by the
e. Once NMP’s are computed, our approach to feature com-
ation is operating in a similar way to that of the SDIMM tech-
e. For each feature vector component, the two clean speech
ates obtained by both the Wiener filter and the IMM algo-
are linearly interpolated with the NMP being treated as the

polating weight.

. Feature Compensation based on IMM
z = [z1, z2, · · · , zD]t represent a D-dimensional log spec-
of the noisy input with t denoting the transpose. Then,

xd + log [1 + exp (nd − xd)] , for d = 1, 2, · · · , D (1)

re x = [x1, x2, · · · , xD]t and n = [n1, n2, · · · , nD]t are the
spectra of the clean speech and added noise, respectively. In
MM technique, the distribution of x is described in terms of a
ssian mixture model (GMM) as follows:

p(x) =
M∑

k=1

p(k)N (x; μk, Σk) (2)
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where M is the total number of mixture components, and p(k), μk

and Σk represent the a priori probability, mean vector and covari-
ance matrix of the kth Gaussian distribution, respectively. On the
other hand, the log spectrum of the background noise is assumed
to be distributed according to a single Gaussian given by

p(n) = N (n; μn, Σn). (3)

To make the nonlinear function given in (1) mathematically
tractable, the IMM algorithm applies a linear approximation such
that

z = Akx + Bkn + Ck (4)

if x is assumed to have come from the kth mixture component.
Here, the coefficient matrices {Ak, Bk, Ck} are obtained by the
statistical linear approximation (SLA) technique which is based
on Taylor series expansion of a nonlinear function [5]. In order to
estimate the evolving characteristics of the noise, current noise is
assumed to vary slowly from the previous time and described by

nt+1 = nt + wt (5)

where wt represents a Gaussian process of zero mean and covari-
ance Q. Equation (4) and (5) construct a linear state space model
and we can apply the IMM algorithm to estimate sequentially en-
vironmental parameter, λn = {μn, Σn}. IMM technique consists
of four major steps [4].

• Step 1) Mixing step : the parameter estimates of the noise
obtained from each mixture component are combined to-
gether to produce a single noise estimate.

μ0
n(t − 1|k) = E[nt−1|kt = k, Zt−1]

=

M∑

j=1

γk(t − 1) μ̂n(t − 1|j)

Σ0
n(t − 1|k) = Cov[nt−1|kt = k, Zt−1]

=

M∑

j=1

γk(t − 1) [Σ̂n(t − 1|j) +

(μ̂n(t − 1|j) − μ̂0
n(t − 1|j))

(μ̂n(t − 1|j) − μ̂0
n(t − 1|j))T ]

where

μ̂n(t − 1|j) = E[nt−1|kt−1 = j,Zt−1]

Σ̂n(t − 1|j) = Cov[nt−1|kt−1 = j,Zt−1]

γj(t − 1) = p(kt−1 = j|Zt−1).

• Step 2) Kalman step : the conventional Kalman update is
carried out conditioned on the initial estimates computed
from the Mixing Step.
- one-step-ahead predictive state estimate ( time update )

μp
n(t|j) = μ̂0

n(t − 1)

Σp
n(t|j) = Σ̂0

n(t − 1) + Q.

- Innovation and its covariance

e(t|j) = zt − Ajμj − Bjμ
p
n(t|j) − Cj

Re(t|j) = BjΣ
p
n(t|j)BT

j + AjΣjA
T
j .
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re 1: Plot of function z = x + log [1 + exp (n − x)]. n= 5.0
x ranges from 0 to 10

- Kalman Gain

Kf (t|j) = Σp
n(t|j)BT

j R−1
e (t|j)

K∗
f (t|j) = αKf (t|j).

- Correction ( measurement update )

μ̂n(t|j) = μp
n(t|j) + K∗

f (t|j)e(t|j)
Σ̂n(t|j) = Σp

n(t|j) − K∗
f (t|j)BjΣ

p
n(t|j).

• Step 3) Probability calculation step : the posteriori proba-
bility associated with each mixture component is updated.

γj(t) =
p(zt|kt = j,Zt−1) p(kt = j)

p(zt|Zt−1)
.

• Step 4) Output generation step : the noise parameter esti-
mates are generated by combining the estimates of all the
mixture components.

μ̂n(t) =
M∑

j=1

γj(t) μ̂n(t|j)

Σ̂n(t) =
M∑

j=1

γj(t) [Σ̂n(t|j) + (μ̂n(t|j)−μ̂n(t))

(μ̂n(t|j)−μ̂n(t))T]

where

μ̂n(t) = E[nt|kt = j,Zt]

Σ̂n(t) = Cov[nt|kt = j,Zt]

γj(t) = p(kt = j|Zt).

. Noise Masking Effect on Clean Speech
Model

rder to illustrate the contamination relationship of speech and
e in log spectrum domain, we plot (1) in Figure 1 as a function

d keeping nd fixed. It can be seen from this figure that when
ch component xd is much smaller than noise component nd,
unction (1) outputs nd only. These functional relationship ex-

n the noise masking effects of nd on xd. When noise masking



effects dominate, the exact estimation of nd cannot lead to exact
estimation of xd because speech information is masked by noise.

In techniques based on a priori clean speech model such as
GMM, a procedure of linearization is unavoidable in order to have
a computationally tractable model. Without considering masking
effects, however, the composed noisy distribution using linear ap-
proximation is quite different from the true distribution of noisy
speech. This difference causes a dramatic bias on the estimation
of clean speech even when the true distribution of clean speech
and noise is known. Clean speech estimation from clusters, most
of which are masked by noise, would rather deteriorate the estima-
tion performance than improve it.

To cope with this problem, we first discriminate ’noise mask-
ing cluster’ in which speech are masked by noise. Based on the
parameters of the GMM and the estimated noise statistics, dis-
crimination between noise masking one and the other can be made
using the fact that dth dimension of kth cluster noisy component
is not sensitive to the speech cluster variation. This means that
the derivative of a function (1) with respect to speech component
represents little change in that function.

Let μk = [μk,1, μk,2, · · · , μk,D]t denote the mean vector of
the kth Gaussian of the GMM associated with the clean speech and
μ̂n = [μ̂n,1, μ̂n,2, · · · , μ̂n,D]t be the estimate for μn obtained
from the IMM algorithm. Then, we can classify all the mixture
components of the GMM into two disjoint subsets. Let Mm,d be
the set of indices corresponding to the mixture components where
the dth spectral element is found masked by the noise, and Mo,d

denote its complementary set. Then, the dth element of the kth
mixture component is decided to be masked by the noise if

∂zd

∂xd xd=μk,d,nd=μ̂n,d

=
1

1 + exp(μ̂n,d − μk,d)
< η (6)

where η is a small positive threshold and zd is defined in (1).

4. Clean Feature Estimation based on
Spectral Masking

In this section, we introduce NMP which accounts for how unre-
liable the estimate from the IMM algorithm would be. NMP is
defined separately for each element of the feature vector. Let us
denote the NMP associated with the dth element of the input noisy
feature vector z by NMPd(z). Then,

NMPd(z) = p(k ∈ Mm,d|z)

=
p(z|k ∈ Mm,d)

p(z)

=
p(z|k ∈ Mm,d)

p(z|k ∈ Mm,d) + p(z|k ∈ Mo,d)
(7)

where λ̂n is the estimate for λn obtained from the IMM algorithm,

and p(k) and p(z|k, λ̂n) represent the a priori probability and the
likelihood, respectively, of the kth mixture component.

Based on method to identify the mixture components which
are masked by the noise proposed in previous section, we can es-
timate the contributions of noise masking clusters and those of its
complementary set by

p(z|k ∈ Mm,d) =
∑

k∈Mm,d

p(k)p(z|k, λ̂n) (8)
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p(z|k ∈ Mo,d) =
∑

k∈Mo,d

p(k)p(z|k, λ̂n) (9)

Once the NMP’s for all the feature vector elements are com-
d, we can estimate the clean speech log spectrum in a way
lar to the SDIMM technique [7]. Let x̂ = [x̂1, x̂2, · · · , x̂D]t

te the estimate for the clean speech feature vector x when the
t is z. Then,

x̂d = NMPd(z)x̂wiener
d + (1 − NMPd(z)) x̂imm

d (10)

hich x̂wiener
d and x̂imm

d represent the two separate estimates
xd provided by the Wiener filter and IMM algorithms, re-
tively. In this paper, to obtain x̂wiener

d , we apply the first-
e mel-warped Wiener filter algorithm proposed in [8] without
voice activity detector (VAD). The frequency response of the
ner filter is smoothed and time-warped using a filter bank that
rporates 23 mel-scale bins.

5. Experimental results
proposed algorithm was evaluated on the AURORA2 task in
h the database consists of the TI-DIGITS data downsampled

kHz [11] [9]. The AURORA2 database is regarded as the clean
ch data and it has been artificially contaminated by adding the
es recorded under several conditions. Three sets of speech
base have been prepared for the recognition experiments. In
set A, the four noises (suburban train, babble, car and exhi-
n hall) are added to the clean data at SNR’s of 20dB, 15dB,
, 5dB, 0dB and -5dB. In test set B, another four different

es (restaurant, street, airport and train station) are added to the
n data at the same SNR’s. Finally in test set C, two of the
es of set A (subway and street) are added and there also exists
annel mismatch. Results are presented as an average value for
SNR conditions from 20dB to 0dB.
The baseline recognition system was built based on a set
ontinuous density Gaussian mixture hidden Markov models
M’s). There were eleven digit models with sixteen states, one
ce model with three states and one short pause model with
state. Training and testing were performed using the HTK
are [11]. Speech features for recognition consisted of twelve

tral coefficients derived from 23 mel-spaced triangular filter
uts and log energy, and these thirteen parameters were aug-
ted with the corresponding delta and acceleration coefficients.
the HMM’s were trained in the clean training condition. Fea-
compensation was performed in the log spectral domain, and
ompensated log spectra were converted to the cepstral coeffi-

ts through discrete cosine transform (DCT).

set A set B set C Average

Baseline 61.34 55.75 66.14 60.06

IMM only 80.69 81.35 76.23 80.06

IMM+SAP 80.94 81.96 77.15 80.59

IMM+NMP 83.77 83.90 78.80 82.83

Table 1: Word accuracies (%) in clean training condition.

In our experiment, the decision threshold η defined in (6) was
to 0.1. A typical example of NMP obtained from a noisy

t with the corresponding clean speech log spectral energy is
n in Fig. 2 where we also plot the trajectory of the SAP com-

d by the SS module. It can be shown from this figure that
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Figure 2: Comparison of NMP and SAP in car noise condition
at 10dB SNR. (a) NMP and SAP estimated from a noisy speech
signal (b) Corresponding clean speech log spectral energy

NMP fits more closely to the clean speech energy variation than
the SAP. For the purpose of comparison, we also tried an approach
where (7) is replaced by

x̂d = SAPd(z)x̂wiener
d + (1 − SAPd(z))x̂imm

d (11)

with SAP (z) denoting the local SAP provided by the SS tech-
nique. The recognition results obtained from the AURORA2 task
in clean training condition are shown in Table 1 where the word
accuracies averaged over the SNR range from 0-20 dB are listed.
In Table 1, IMM+NMP and IMM+SAP represent the proposed al-
gorithms which are based on NMP and SAP, respectively. From
the result, it is apparent that IMM+NMP produced higher recog-
nition accuracy than both IMM and IMM+SAP over all the SNR
ranges. IMM+NMP improved the performance of the IMM algo-
rithm up to 14.71 %. Figure 3 show experimental results for test
data contaminated by babble and car noise condition. As shown in
this Figure, the proposed algorithm is more effective in low SNR.

6. Conclusions
In this paper, we have proposed a new approach to measure the rel-
ative degree of speech activity. Proposed NMP has been applied to
feature compensation and found to improve the overall recognition
performance particularly in low SNR conditions. Proposed NMP
is very useful method applicable to ’missing feature theory’ and
’feature domain compensation’ based on clean speech model.
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