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Abstract

This paper describes our efforts in building a competitive
Mandarin broadcast news speech recognizer. We success-
fully incorporated the most popular speech technologies
into our system. More importantly, we present two novel
algorithms in smoothing pitch features and segmenting Chi-
nese characters into word units. Additionally, we propose
to borrow the principle of pointwise mutual information for
creating a Chinese word lexicon automatically. Our final
system achieved 6.0% character error rate (CER) on dev04
and 16.0% on eval04, with simpler acoustic models, less
training data, and simpler decoding architecture compared
with other state-of-the-art systems, yet was equally compet-
itive.

Index Terms: Mandarin speech recognition, character error
rate, pitch smoothing, word segmentation.

1. Introduction

Due to economic and national security reasons, automatic
speech recognition for Arabic and Mandarin languages has
drawn great attention lately, particularly for broadcast news
and broadcast conversational speech. This paper focuses
on our efforts to build and improve our Mandarin broadcast
news speech recognition system.

The organization of this paper starts from language
modeling, where an n-gram based maximum likelihood
(ML) word segmentation algorithm is presented. We ar-
gue that it generates more meaningful segmentation, which
will benefit machine translation, than the blind longest-first
match algorithm. Next we explain our acoustic feature rep-
resentation, in particular on the use of improved smooth-
ing and normalization of pitch features. We then build our
system with the above algorithms and incorporate popular
speech technologies. Section 4.2 shows the contributions of
major acoustic components on benchmark test sets. Finally
we outline our future work to further advance our system.
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2. Language Modeling

Training Text and Preprocessing

used several corpora for training our language models
s): the HUB4 1997 Mandarin broadcast news acoustic

scripts (Hub4), the LDC Chinese TDT2, TDT3, TDT4,
ltiple-Translation Chinese Corpus (MTC) part 1, 2, and
nd Mandarin Gigaword corpus. Due to limits of ma-
e memory for LM training, we only used a portion of
Mandarin Gigaword corpus: all of the materials from
, ZBN, and CNA, spanning from the years of 2001 to

4. We sampled a small heldout set, lmdev-06 (about
characters), from TDT4 and some broadcast conver-

ons from GALE collection as the LM development set.
ev-06 and all text from November 2003 and April 2004
e excluded from LM training. This gave us about 420M
ds of training text.
Before training an LM, we first performed text normal-
ion on the Chinese text data to remove HTML tags, get
of phrases with bad or corrupted codes, convert numbers

their verbalized forms in Chinese, and delete punctua-
s. Word fragments and background noise transcriptions
e mapped to a special garbage word, and laughters to
ughter word. Both the garbage word and the laughter
d were treated as lexical words, and therefore their n-

s would be trained.

Word Segmentation

ce Chinese characters are written without space, word
mentation needs to be performed after text normaliza-
. Our word segmentation algorithm can be summarized
ollows:

. Create an initial lexicon of words with the following
greedy merge algorithm:

(a) Start from a lexicon where all words are single-
character.

(b) Compute the pointwise mutual information [1]
for every pair of words in the current lexicon:

PMI(w1, w2) = log
p(w1w2)

p(w1)p(w2)

September 17-21, Pittsburgh, Pennsylvania



where p(w1w2) is the probability that w1 is fol-
lowed by w2.

(c) Choose the pair with the maximum PMI and
merge the two words into a new longer word.
Add the new longer word into the lexicon.

(d) Go to Step (b) to re-compute PMI, until a certain
threshold is met.

Due to time constraint, we adopted an initial lexi-
con with phonetic pronunciations from BBN Tech-
nologies. In the future, we would like to study the
effectiveness of the PMI based auto lexicon as it is
valuable when we extend our work to other Asian lan-
guages.

2. Perform longest-first match for word segmentation on
all training text, using the the above word lexicon.

3. Train a close-vocabulary n-gram LM for the most fre-
quent V words. Unselected words are mapped to the
garbage word.

4. With the above n-gram, do a second iteration word
segmentation by searching for the segmentation with
the maximum n-gram probability.

The longest-first match is a blind match, which can re-
sult in non-logical segmentation as the following example
shows:

���/��/��...
(The Green Party made peace with
the Min Party via marriage...)

A more informed segmentation is to search for the ML
segmentation path if a word-based n-gram LM is available.
Particularly in the above example, the segmentation was
fixed correctly in our experiment:

���/�/���...
(The Green Party and the QinMin Party...)

Although the better segmentation may not necessarily
imply significantly better recognition accuracy, it can be
crucial for machine translation. Furthermore, to compare
the perplexity of different word-based Chinese LMs (with
the same lexicon), we should compute the lowest perplex-
ity among all possible word segmentations on any test data,
given each LM. Therefore, we advocate the n-gram ML seg-
menter. To avoid being trapped at local optimum, it is better
to train the n-gram LM at Step 3 discriminatively [2] or to
use a lower-order n-gram (such as unigram) at the second
iteration of segmentation.

2.3. Compact Bigram and Large Four-gram

After the second word segmentation, we chose the most
frequent 49K words as our decoding vocabulary, which
included several dozen of English words. We trained 8
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arate 4-gram LMs using the SRILM toolkit [3] with
ser-Ney smoothing, for Hub4, TDT2, TDT3, TDT4,
C123, Gigaword-XIN, Gigaword-ZBN, and Gigaword-
A respectively. We optimized the interpolation weights
hese LMs to maximize the likelihood of lmdev-06 given
interpolated LM. Our final 4-gram LM included 20M
ams, 74M trigrams, and 57M 4-grams. Section 4.1 ex-
ns our decoding architecture. For the first pass fast de-
ing, we pooled together about half of the 4-gram LM
ning data to create a compact bigram LM, with 15M bi-

entries. The perplexities on lmdev-06 using the 2-
vs. 4-gram LMs are 495 vs. 288. The big 4-gram LM

ieved almost 42% of perplexity reduction.

3. Acoustic Modeling

Acoustic Training and Test Data

acoustic training data included Hub4 and the CCTV
VOA programs of the TDT4 corpus1. The TDT4 data
es with closed caption, but no accurate transcription.
refore we used the flexible alignment algorithm de-
bed in [4] to select the segments with high confidence
he closed caption. There were in total about 97 hours of
ustic data after selection.
The Mandarin RT-04 development data, dev04, was
d for system development. It consists of half an hour
CTV broadcast news programs from November 2003.

er system parameters were tuned, we then applied them
e RT-04 evaluation set, eval04, which includes one hour
roadcast news from CCTV, RFA, and NTDTV in April
4. Due to these two test sets, all text from November
3 and April 2004 were excluded during LM training.

Acoustic Feature Extraction and Pitch Processing

used the 12th order mel-scale cepstrum coefficients
CC) to do automatic speaker clustering and compute

al track length normalization warping for all auto speak-
both based on Gaussian mixture models.
F0 was extracted with ESPS’s get f0 and then passed

lognormal tied mixture model [5] to alleviate pitch
ing and doubling problems. In our previous systems,
oothing algorithm similar to [6] was applied. Recently

have obtained improved performance by using the fol-
ing smoothing algorithm: (a) Spline interpolation for the
oiced regions, (b) Taking log of F0, (c) Moving window
malization, and (d) 5-point moving average smoothing.
After we obtained the pitch feature for all time frames,
applied both mean and variance normalization to all di-
sions, including c0, on a per utterance basis. The final

dimension feature vector included first and second order

The CNR programs were not used in the experiments here because we
’t seen any further improvement by adding this subset in training.



Smoothing Algorithm dev04 eval04

no pitch 14.5 24.1
IBM style 14.0 22.2
SPLINE 12.7 21.4

Table 1: CER comparison of different pitch smoothing al-
gorithms.

differences.
To achieve a fast turnaround on investigating the best

pitch smoothing algorithm, we used an acoustic model
which was ML trained with Hub4 acoustic data only; de-
coded with the small bigram and unsupervised maximum
likelihood linear regression (MLLR) adaptation [7]. Table 1
demonstrates our superior smoothing algorithm. For more
details, please refer to [8].

3.3. Pronunciation Dictionary

With large vocabulary, it is natural to use phonetic models.
Our phone set and pronunciation dictionary were derived
from BBN, with very minor bug fixes and the addition of
a silence phone and a noise phone, for a total of 72 base
phones. The phone set follows the main-vowel principle
in [9, 10]. Our garbage word was modeled by the noise
phone, rej, with a pronunciation graph which allowed two
or more rej phones. There were not many examples of
laughter in our acoustic training data. Therefore we set
the laughter word to have the same pronunciation as the
garbage word. However, these two words were treated
as two different lexical words in order to play different
language roles. When future training samples contain
significant laughter, we can easily create a new phone to
model laughter separately without changing the training
text transcription. All phonetic HMMs have the same
3-state left-to-right Bakis model topology.

3.4. Acoustic Models

We began by mapping our existing English context-
independent (CI) phone models to the Mandarin phone set,
followed by training the Mandarin CI model with the Hub4
acoustic data. Once we had a well trained CI model, it was
used to train context dependent models, clustered down to
2500 shared Markov states (senones) with decision trees
[11]. Each senone was modeled by 32 Gaussians. While
building decision trees, we allowed clustering across tri-
phones which represent the same toneless phone, and added
different combinations of tone questions. We built both
crossword and non-crossword triphone models, with the ob-
jective of either ML or minimum phone error rate (MPE)

trai
ime
All
men
form
was
ture
|A|

aco

4.1.

We

1

2

3

4

5

6

4.2.

In a
con
plie
nal

1235

INTERSPEECH 2006 - ICSLP
ning with phone lattices [12]. We also conducted exper-
nts with and without speaker adaptive training (SAT).
models were gender independent. For SAT experi-
ts, we computed the 1-class constrained MLLR trans-
ation [7] for each training speaker. The transformation
then converted to the feature domain as the SAT fea-
transform for each speaker: N(x; Aμ + b, AΣAt) =

−1N(A−1(x − b); μ,Σ).
Section 4.2 will present the progress of each of our
ustic models.

4. Experiments

Decoding Architecture

used a simple two-stage decoding structure as follows:

. Automatically identify the speech segments in the in-
put audio program with a finite-state grammar which
defines that an audio recording consists of any num-
ber of silence and/or speech segments. Each silence
segment is modeled by one or more silence HMMs;
each speech segment by at least 17 speech HMMs.
Each HMM state is modeled by 300 Gaussians with
39-dimension MFCC and its differences.

The identified speech portion is then segmented into
short utterances of at most 10 secs long.

. Compute the 42-dimension acoustic feature per
frame, as described in Section 3.2, for each utterance.

. First stage search: Run the first pass fast decoding
with the non-crossword, non-SAT ML trained acous-
tic model and the small bigram LM. Output both the
best hypothesis and a word lattice for each utterance.

. Expand the bigram word lattices in Step 3 with the
big 4-gram LM.

. For each auto speaker, compute 3-class (silence,
vowel, consonant) MLLR adaptation using the top 1
hypothesis from Step 3. The model being adapted can
be the same AM used in Step 3 or another more com-
plicated AM. If an SAT AM is adapted at this step,
the speaker dependent SAT feature transform is com-
puted before MLLR adaptation.

. Second stage search: Search through the 4-gram
word lattices with the speaker adapted AMs for the
maximum-likelihood word sequence.

Experimental Results

ll experiments reported here, decoding steps 1-4 stayed
stant. We varied the acoustic models in Step 5, and ap-
d these speaker adapted acoustic models to Step 6 fi-
decoding, constrained by the same 4-gram word lattices,



acoustic model dev04 eval04

nonCW, nonSAT, ML 7.4% -
nonCW, nonSAT, MPE 6.9% -

nonCW, SAT, ML 6.8% -
CW, SAT, ML 6.4% -

CW, SAT, MPE 6.0% 16.0%

Table 2: CERs using different acoustic models at Step 4
of the decoding architecture. CW stands for crossword tri-
phones.

for dev04. As Table 2 shows, MPE training, SAT normal-
ization, and crossword triphone modeling all contributed
significant error rate reduction. Finally, we applied the
same decoding architecture using the best acoustic model
to eval04 and achieved 16.0% CER, without any tuning.

5. Conclusion and Future Work

In this paper, we presented a new pitch smoothing algo-
rithm and a new Chinese word segmentation algorithm.
The SPLINE based pitch smoothing algorithm provided im-
provement over the popular IBM-style smoothing. The n-
gram based ML segmentation often offered a better word
segmentation. We have successfully incorporated both of
these, along with various dominating speech technologies to
build a competitive Mandarin broadcast news speech recog-
nition system, with 6.0% CER on dev04 data set and 16.0%
on eval04. We used less training data and simpler decod-
ing architecture to achieve essentially identical error rates
compared with other state-of-the-art systems.

One issue that we have not investigated is the handling
of pure English speech segments. Sometimes test data con-
tains segments of interviews with non-Chinese, who speak
in English. These segments are spoken by native English
speakers, not occasional English words embedded in Chi-
nese sentences uttered by Chinese speakers. Ideally the
system should first identify which language is spoken with
100% accuracy, and then switch to that language AM and
LM for decoding. We will be investigating different meth-
ods of language ID and code switching.

Formerly we demonstrated that adding MLP posterior
features into our conversational telephone speech recog-
nizer improved recognition accuracy [13]. We will be inte-
grating the more advanced ICSI feature [14] into our broad-
cast news recognizer for improved feature representation.

Improving the pronunciation phone set is another area
of investigation. Furthermore, we would like to investigate
the effectiveness of using PMI to create our initial word list
automatically. Finally, adding more training data (acoustics,
text, and web data) is always in the plan, particularly adding
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adcast conversation type of text as currently there is not
entiful supply.
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