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Abstract
In this paper, we propose a two-microphone Voice Activity De-
tection (VAD) method in the presence of coherent interference.
The proposed method is based on the Cross Power Spectrum
Phase (CPSP) which is an implementation of the Phase Transform
(PHAT) weighted cross correlation between two microphones.
The PHAT weighting whitens the spectrum of input signals and
makes the cross correlation dependent entirely on the phase of the
cross spectrum. If we assume that the direction of desired speech
signal is known and the time delay between microphones is com-
pensated, the Averaged CPSP (A-CPSP) can be utilized as a VAD
measure. In order to enhance the VAD performance in the presence
of strong coherent interference from other direction, we propose a
Maximum Partially Averaged Real CPSP (MPA-RCPSP) method
which detects the cophased frequency region with high Signal-to-
Interference Ratio (SIR). Simulation results demonstrate that the
proposed MPA-RCPSP is a more reliable measure to the conven-
tional A-CPSP in the presence of strong coherent interference.
Index Terms: voice activity detection, two-microphone, Cross
Power Spectrum Phase.

1. Introduction
The VAD is used to detect desired speech signal in the presence
of noise and thus an essential part in many applications such as
speech recognition, speech enhancement, and speech coding. In
speech recognition systems, the accuracy of start and end point
detection affects the recognition rate. In speech coding, we can
reduce the coding rate by allocating no bits for the speech absent
periods. VAD is also critical in adaptive speech enhancement since
many algorithms use the noise statistics and noisy speech statistics
which are estimated from speech present/absent periods.

There have been many single-microphone VAD algorithms
based on time domain or spectral domain energy, zero-crossing
rate, cepstral coefficients, spectral entropy and the like [1]. How-
ever, most of these methods fail in the presence of interference
which has broadband speech-like spectral characteristic. For bet-
ter VAD performance, multi-channel algorithms have been intro-
duced, which take advantage of the spatial selectivity for discrim-
inating the desired speech signal in the presence of speech-like
noise. Specifically, Le Bouquin and Faucon introduced a technique
based on the coherence function [2]. They assumed that the spatial
correlation between the disturbing noises is weak for all frequen-
cies of interest while the speech signals are highly correlated. And
they compare the averaged Magnitude Squared Coherence (MSC)
with a threshold to decide whether the speech is present in the cur-
rent segment or not. However, this method fails in the presence of
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elated noise signal. More recently, Armani et. al. proposed an
rithm based on CPSP Coherence Measure (CPSP-CM) that is
lly used for speaker location and tracking purposes [3]. They
ulate the maximum CPSP-CM from the current frame data and
pare with the current threshold. With the assumption that the
ction of desired speech signal is known, the CPSP-CM based

successfully detects the speech present segments in the pres-
of coherent interference as well as uncorrelated noise. How-

, in the strong coherent interference (low SIR), the CPSP of
y signal is much affected by the coherent interference, result-
in unreliable VAD.
We propose a more reliable two-microphone VAD measure in
resence of strong coherent interference. This method searches
he cophased frequency region of the CPSP for more reliable
ction of desired speech signals. Intensive simulation results

that the proposed measure is more reliable than the CPSP-
based VAD measure.
This paper is organized as follows. In the next section, we
ribe some backgrounds for the CPSP and the classification of
e field. Section 3 presents the proposed method that detects
cophased frequency region of the CPSP. Section 4 shows the
lation results and section 5 concludes the paper.

breviations
Voice Activity Detection

P Cross Power Spectrum Phase
T Phase Transform
PSP Averaged Cross Power Spectrum Phase
-RCPSP Maximum Partially Averaged Real CPSP

Signal-to-Interference Ratio
Magnitude Squared Coherence

P-CM CPSP-based Coherence Measure
Power Spectral Density

2. Backgrounds
Cross Power Spectrum Phase (CPSP)

discrete time signals received at the two microphones are
eled as

x1(n) = s(n) + v1(n) (1)

x2(n) = αs(n − D) + v2(n) (2)

re s(n) is a desired speech signal at discrete time index n and
flects the attenuation which is assumed to be time invariant.
noise v1(n) and v2(n) model the ambient noise, sensor noise,
oherent interference produced by localized sources and also
de the reverberation. D is the time delay in samples, which
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Figure 1: Normalized cross PSD. (a) Diffuse noise field. (b) Co-
herent noise field.

depends on the direction of desired speech signal. The speech sig-
nal is assumed to be uncorrelated with noise signals except the
severe reverberant signals.

The information of phase difference between the two micro-
phone signals can be revealed by the normalized cross Power Spec-
tral Density (PSD). The cross PSD between x1(n) and x2(n) is
written as

Gx1x2(e
jω) = αGss(e

jω)ejωD + Gv1v2(e
jω) (3)

where ω is the normalized frequency and Gss(e
jω) is the auto PSD

of desired speech signal, and Gv1v2(e
jω) is the cross PSD of noise

signals. If the noise signals are uncorrelated (Gv1v2(e
jω) = 0),

the cross PSD normalized by the magnitude is a complex exponen-
tial revealing the time delay D, i.e.,

Gx1x2(e
jω)

|Gx1x2(e
jω)| = ejωD. (4)

Practically, the normalized cross PSD is estimated by CPSP that is
calculated through the discrete time Fourier transform applied to
the windowed segments of x1(n) and x2(n) as

φ(ejω) =
X1(e

jω)X∗
2 (ejω)

|X1(ejω)X∗
2 (ejω)| . (5)

2.2. Noise field

The noise signal can be classified into incoherent/coherent/diffse
noise according to the coherence of a sound field [4]. The prop-
erties of noise fields are summarized in terms of normalized cross
PSD as follows.

2.2.1. Incoherent noise

The normalized cross PSD is zero at all frequencies in the incoher-
ent noise-field:

Gv1v2(e
jω)

|Gv1v2(e
jω)| = 0, ∀ω. (6)

Thermal noise in each microphone can be modeled as the incoher-
ent noise.
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. Diffuse noise

diffuse noise field is the noise model that is generated by infi-
noise sources in every direction of a hypothetical sphere with

nfinite radius. So it has uniform energy flow in all directions.
diffuse noise field model well describes the practical noise
in cars. In practice, noise sources arrive from all directions

in a given time window in diffuse noise field. Consequently,
reverberant room can also be modeled as a diffuse field. The

alized PSD in a theoretical diffuse noise field is dependent on
istance between two microphones d and the signal frequency

n by
Gv1v2(e

jω)

|Gv1v2(e
jω)| =

sin(ωfsd/c)

ωfsd/c
(7)

re c denotes the speed of sound and fs is the sampling fre-
cy. The theoretical and measured normalized PSD for diffuse

e field are depicted in Fig. 1(a). Note that the normalized
s PSD of signals at the frequency higher than ω = πc/(fsd)
be ignored in practice. Therefore, the diffuse noise field can
onsidered as the incoherent noise field as long as the distance
een two microphones is sufficiently large.

. Coherent noise

irectional wavefront coming from a localized sound source is
eled as the coherent noise field. In principle, given two mi-
hone signals, one of them is a scaled and delayed signal of the
r. In this case, the normalized cross PSD is given as

Gv1v2(e
jω)

|Gv1v2(e
jω)| = ejωfsd cos θ/c. (8)

real part of the normalized PSD for coherent noise is described
ig. 1(b), with the example of noise coming from the angle of
.

VAD based on Cross Power Spectrum Phase

], the inverse discrete time Fourier transform of φ(ejω) is used
e coherence measure for finding the time delay between two
ophone signals as

C(τ) =
1

2π

∫ π

−π

φ(ejω)ejωτdω. (9)

coherence measure C(τ) has the cross correlation peak at the
delay D. In [3], the CPSP-CM was used to detect start-end

t for distant-talking speech recognition. They calculate the
P-CM from the current frame, and compare the maximum
e with the threshold for the detection of coherent directional
ch. However, in the presence of competing coherent noise,

CPSP-CM at the time delay D may not be the maximum any
er. In this case, we need the information about the direction
esired speech signal or the corresponding time delay between
microphones. If the time delay for the desired speech signal is
l to D, C(D) is compared with the threshold. For simplicity,

assume zero time delay (D = 0) without loss of generality.
that C(0) is the inverse discrete time Fourier transform cal-

ted at τ = 0 in (9), which can be considered as the Averaged
P (A-CPSP) over all frequencies. For the high SIR, CPSP
) is close to one at all frequencies and A-CPSP approaches

As the power of coherent interference becomes higher than
of desired speech signal, the CPSP oscillates according to the
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Figure 2: Averaged Cross Power Spectrum Phase (A-CPSP) ac-
cording to the angle of interference and SIR.

CPSP of interference and A-CPSP approaches zero. Theoretical
analysis for A-CPSP shows that A-CPSP rapidly varies around
0dB SIR. It approaches one for the SIR above 0dB and approaches
zero for SIR below 0dB. When the sampling frequency is 16kHz
and the distance between two microphones is 34cm, and the inter-
ference is coming from the source at the angle of 40◦, the theoret-
ical A-CPSP values are 0.935, 0.894, 0.820, 0.645, 0.453, 0.350,
0.276 for the SIRs of 3dB, 2dB, 1dB, 0dB, -1dB, -2dB, -3dB (Fig.
2) respectively. It can be observed that A-CPSP rapidly goes to
zero as SIR goes below 0dB, and thus speech present segment
is apt to be missed in low SIR. Moreover, even when the SIR is
higher than 0dB, A-CPSP tends to go to zero when the frequency
region with SIR below 0dB is wider than that with SIR above 0dB.
The speech signal usually has resonances called “formants” and
most acoustic energies are concentrated on the narrow frequency
bands. Therefore, if the interference has broadband spectrum, even
moderate interference can yield wide frequency region with SIR
below 0dB.

In order to alleviate the above mentioned problems of A-CPSP,
we propose an alternative method that searches for the maximum
of partially averaged real CPSP (MPA-RCPSP) and use it as a mea-
sure for detecting speech present segments. The MPA-RCPSP for
the current frame is obtained by shifting a P -sized frequency win-
dow and averaging real CPSPs within this window, and then find-
ing the maximum averaged value. This process aims to detect a
partial cophased frequency region where the SIR is higher than
0dB, thereby detecting speech present segments more reliably in
the presence of strong coherent interference. Fig. 3 illustrates the
proposed method. The CPSPs of the cophased speech signal and
the coherent interference with angle of 40◦ are described in Fig.
3(a),(b). Fig. 3(c) shows SIRs at each frequency bin of the noisy
signal with -12.7dB SIR for the whole frequency bins which is
defined as

SIR(dB) = 10 log10

∫ π

−π

∣∣Xs
1(ejω)

∣∣2 dω∫ π

−π
|Xv

1 (ejω)|2 dω
(10)

where Xs
1(ejω), Xv

1 (ejω) are the speech/noise components of the
discrete time Fourier transform of the signal at the first micro-
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re 3: Detection of cophased frequency region. (a) Real CPSP
esired speech signal. (b) Real CPSP of coherent interference.
IRs at each frequency bin of the noisy signal. (d) Real CPSP
e noisy signal and P -point frequency window (dotted line).

e. Even though the SIR is very low (-12.7dB) in this ex-
le, there exists a cophased frequency region with SIR above
at low frequencies, and this region can be detected by find-

MPA-RCPSP which is close to one (Fig. 3(c)). Therefore, the
ased speech signal can be detected using this measure as long
ere exists a frequency region with higher SIR than 0dB dur-

P -sized frequency window. This method is based on the fact
the A-CPSP approaches one with just slightly higher than 0dB
20 for 1dB) (Fig. 2).
The window size P is generally chosen as the multiples of the
P period corresponding to the interference in order that the
sure is close to zero for the interference-only periods.

τ =

[
d cos θ

c
fs

]
(11)

P = m
2π

|τ | , m = 1, 2, · · · , |τ | (12)

re [·] denotes the nearest integer to the argument. The win-
size P less than the period of CPSP results in increasing the
-RCPSP during the interference-only periods. To suppress
PA-RCPSP during the interference-only periods, we subtract

CPSP due to interference from the CPSP of noisy signal such

φ̃(ejω) = φ(ejω) − C(τ)e−jωτ (13)

re τ is the time delay between two microphones for the inter-
g signal.

3. Simulation Results
he simulations, we generate multichannel noisy signals by
ng noise to the speech. The reverberant multichannel signals
generated by the convolution of dry source (sound data mea-
d in an anechoic room) with acoustic impulse responses from
RWCP Sound Scene Database [6]. The RWCP Sound Scene
base is a common database collected in real acoustic environ-
t for research in varied fields of application such as speech



Figure 4: Interference of a competing speech. (a) Desired speech
signal. (b) Noisy signal contaminated by directional competing
speech. (c) Normalized A-CPSP. (d) Normalized MPA-RCPSP.

recognition, echo canceller, active noise control and so on. Nu-
merous impulse responses with microphone array are measured
in real environments to simulate the various environments by the
convolution with dry sources. The impulse responses are mea-
sured at several positions which are 2m distance from the micro-
phone array with reverberation time of 300 ms. Speech signal is
convolved with the impulse response measured at the fore side of
the microphone array. In order to test the algorithm with coherent
interference, the competing speech is convolved with the impulse
response measured at the angle of 40◦.

The simulation results in the presence of directional compet-
ing speech are displayed in Fig. 4. The interference is added to
the utterances of ten digits with 0dB SIR. The sampling rate is
16kHz and 512 points FFT is applied to the hanning-windowed
data. Fig. 4(a) shows the desired speech signal. The noisy speech
signal corrupted by directional interference is shown in Fig. 4(b).
The A-CPSP and MPA-RCPSP are normalized so that the max-
imum is 1 and the minimum is 0 for the purpose of comparison
(Fig. 4(c),(d)). The figure shows that the proposed method pro-
vides more reliable VAD measure than the conventional method.
The receiving operating characteristic (ROC) curves for the speech
detection rate vs. false alarm rate are also described to compare the
performance of the proposed MPA-RCPSP with the conventional
A-CPSP (Fig. 5). These curves show the trade-off between the
correct speech detection rate and false alarm rate depending on the
threshold and support that the proposed MPA-RCPSP outperforms
the conventional A-CPSP.

4. Conclusions
We have proposed a new two-microphone VAD algorithm based
on CPSP. The proposed method searches for the maximum of par-
tially averaged real CPSP to find the cophased frequency region
and uses it as a measure for detecting speech present segments in-
stead of the averaged CPSP over all frequencies. The cophased
speech signal can be detected using this measure as long as there
exists a frequency region with higher SIR than 0dB during P -sized
frequency window. In the simulation results, the ROC curves for
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re 5: Speech detection rate vs. false alarm rate (ROC curves).

ch detection rate vs. false alarm rate supports that the pro-
d method outperforms the conventional method.
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