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Abstract

This paper considers the problem of training/testing mismatch

in the context of speaker verification and, in particular, explores

the application of missing feature theory in the case of additive

white Gaussian noise corruption in testing. Missing feature the-

ory allows for corrupted features to be removed from scoring,

the initial step of which is the detection of these features. One

method of detection, employing spectral subtraction, is stud-

ied in a controlled manner and it is shown that with missing

feature compensation the resulting verification performance is

improved as long as a minimum number of features remain. Fi-

nally, a blending of “soft” spectral subtraction for noise mitiga-

tion and missing feature compensation is presented. The result-

ing performance improves on the constituent techniques alone,

reducing the equal error rate by about 15% over an SNR range

of 5 - 25 dB.

Index Terms: speaker verification, GMM, spectral subtraction,

missing features.

1. Introduction
An important concern in speaker verification is the degra-

dation that occurs when speaker models trained with

speech from one type of channel are subsequently used to

score speech from another, known as channel mismatch.

This paper presents a Gaussian mixture model (GMM)-

based speaker verification system [1] that uses a merg-

ing of a “soft” variation of spectral subtraction (SS) [2]

with missing feature theory that helps mitigate this prob-

lem. Training speech is clean, while testing speech is

corrupted with additive white Gaussian noise (AWGN).

Missing feature theory recognizes that at times features

may be too corrupted to be usable and attempts to de-

tect and gracefully remove such features from the scoring

process via a method known as missing feature compen-
sation (MFC) [3] [4]. In this case SS may be employed

not only as a noise compensation technique, but also as a
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ssing feature detector (MFD). This paper explores this

ection method and presents a controlled study of per-

mance limits for MFD, providing evidence that with

GN corruption, missing features can be detected with

sonable accuracy relative to a perfect detector. The

ulting process of MFD and MFC is shown to signifi-

tly enhance performance in certain circumstances so

g as there is a sufficient number of speech features re-

ned for scoring. Finally, the paper considers the linear

bination of SS, as a noise mitigation technique, with

C in an AWGN environment and demonstrates that

s combination improves performance with respect to

al error rate (EER, where % misses = % false alarms)

≈ 15% across a wide range of noise levels relative to

case where the constituent methods are applied alone

in comparison to the baseline case of no attempted

ise mitigation.

2. Comparison of Hard and Soft SS
nsider a speech signal x(n) that has been corrupted by
tionary additive noise a(n), to produce a noisy speech
nal y(n):

y(n) = x(n) + a(n). (1)

th the assumption that x(n) and a(n) are independent
o mean wide-sense stationary processes,

E[|Y (m, k)|2] = E[|X(m, k)|2] + E[|A(m, k)|2], (2)

ere X(m, k), A(m, k), and Y (m, k) represent discrete
rt time Fourier transforms [5] for frame m, k denoting
frequency variable. The resulting Mel-filter energy

tures [5] M(m, l), l denoting the feature number, are
posed of signal and additive noise components. Us-
non-speech frames, an estimate of the average Mel-

er energies for the noise, N̂ (m, l), may be found. The
e value of the signal component of the corrupted Mel-
er energy features, Mtrue(m, l), is then estimated in
basic form of SS as

M̂true(m, l) = M(m, l) − N̂ (m, l). (3)

neralized SS, described in [3], is given by

D(m, l) = M(m, l) − αN̂ (m, l) (4)
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and

M̂true(m, l) =

(
D(m, l), if D(m, l) > βN̂ (m, l)

βN̂ (m, l), otherwise,
(5)

where α ≥ 1 and 0 < β ≤ 1. The parameter α is used

to overestimate the Mel-filter energy of the noise, and β
determines the level of the spectral flooring. This variant

of SS is referred to here as hard SS.
By applying the SS to the |DFT |2 values prior to the

Mel-filterbank, the error component of each feature may
be decreased through averaging [2]. Consider the follow-
ing two expressions that give the resulting Mel-filter en-
ergy M(m, l) when SS, the nonlinear flooring operation
(equation (5)) of which is symbolized by the operator S,
is applied in the |DFT |2 domain and Mel-filter energy
domains, respectively:

Mdft(m, l) =
X

k

M2
l (k)S(|Y (m, k)|2 − N̂dft(m, k)) (6)

and

Mmel(m, l) = S({
X

k

|M2
l (k)Y (m, k)|2} − N̂mel(m, k)),

(7)

where M2
l (k) denotes the values of the lth Mel-filter.

N̂dft(m, k) is the noise spectral estimate in the |DFT |2
domain, and N̂mel(m, k) is the noise spectral estimate

in the Mel-filter energy domain. It is seen that while

Mmel(m, l) is exposed to a single nonlinear operation

S, Mdft(m, l) is computed by a weighted summation of

the outputs of a large number of such operations. In [2]

it is shown that the resulting speech features under this

operation, referred to as soft SS, outperform those of hard

SS by approximately 2 dB across a wide SNR range of

AWGN degrading X(m, k).

3. Missing Feature Compensation
This section first introduces the general theory of MFC

in a speaker recognition framework. The issue of detect-

ing missing features is then discussed and results of base-

line speaker verification experiments with missing fea-

ture compensation are described.

3.1. General Theory

Missing feature theory recognizes that including a highly

corrupted feature in the scoring mechanism may worsen

performance compared to if it were omitted. One man-

ner discussed in [3] and [4] to deal with a missing fea-

ture is to adapt the GMMs to remove it from inclusion in

scoring. This method, MFC, uses generalized SS to clas-

sify features as “missing” or “present”, rather than as a

speech enhancement pre-processor. Since the covariance

matrix in GMM, denoted for each mixture as Σi, is of-

ten assumed diagonal, each of the multi-variate Gaussian

PDFs Φ may be re-written as a product of single-variate
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ussian PDFs as

p(X|λ) =
M∑

i=1

pi

D∏

k=1

Φi(xk, μki, σ
2
ki),

ere μki and σ2
ki are the mean and variance of feature

ment xk in state i and pi is the prior probability of
speaker model being in state i. Assuming the abil-
to distinguish “present” and “missing” features, to
discussed in section 3.3, we may divide our overall
ech feature vector X = {x1, x2, ..., xD} into two sub-
tors, Xpresent and Xmissing to give

|λ) =

MX

i=1

pi

DpresentY

j=1

Φi(xj , μji, σ
2
ji)

DmissingY

k=1

Φi(xk, μki, σ
2
ki)

FC then proceeds by removing the second product
m representing the sub-vector Xmissing and leaving
ly the data associated with Xpresent:

pmfc(X|λ) =

MX
i=1

pi

DpresentY
j=1

Φi(xj , μji, σ
2
ji),

ich is then used in place of the full GMM p(X|λ).

. Potential Performance Benefits

study the potential degradation caused by a single

ssing feature, a simulation was run in which the 10th

ear Mel-energy feature for every frame for an other-

se clean/clean case was nulled1. The resulting EER

%) is given in table 1. For comparison, results are

Scenario EER (%)

Clean/Clean 3.26

lean/(Clean w/ MFC applied to every 10th feature) 3.39

Clean/(Clean + AWGN) (20dB) 23

Clean/(Clean + Every 10th Feature Zeroed) 32

Table 1: Potential benefit of applying MFC.

o given for cases of uncorrupted clean/clean (3.26%),

an/clean with AWGN (23%), as well as MFC applied

the 10th feature in every frame (3.39%). Throughout

s paper the sampling rate was 8 khz, resulting in 24 fea-

es/frame. GMMs had 1024 mixtures. All simulations

d speech data from the TSID corpus2. Controlled dirty

ech was simulated by adding AWGN to the speech

the clean channel. Speaker and background models

re each trained with approximately 5 and 40 minutes

h, respectively. Test utterances were approximately 2

nutes each in duration. The results demonstrate that

ssing features can significantly reduce performance if

luded and that performance may be significantly re-

red through MFC.

1The 10th feature (out of 24) was selected as it has been experimen-

y shown to represent information in a relatively important spectral

d [6].
2Tactical Speaker ID Speech Corpus, Linguistic Data Consortium,

://www.ldc.upenn.edu.



Figure 1: Trade-off between corrupted features and removing

speech information in MFC.

To further investigate the speech distortion/noise

compensation trade-off, simulations involving the cor-

ruption of randomly chosen features every frame for the

clean test data were run. The number of corrupted Mel-

filter energy features was fixed, although the particular

features were determined randomly frame-by-frame. The

corruption was AWGN at 20 dB. One simulation looked

at verification performance using this randomly corrupted

data. For comparison, a second study had a certain pre-

determined number of features randomly chosen and re-

moved by MFC each frame. Finally, a third study added

20 dB AWGN to all features and a fixed number of fea-

tures each frame were randomly chosen to be removed by

MFC. The resulting EER points are in figure 1. The ap-

plication of MFC maintains EER performance until the

removal of � 15 features, outperforming the case of no

MFC up to the removal of about 20. In these cases MFC

improves performance to a certain point, beyond which

the noise removal cannot compensate for the loss of a

minimum amount of necessary speech information.

3.3. Speaker Verification with Missing Feature Com-
pensation

In order to remove missing features, the speaker verifica-
tion system must first be able to distinguish which fea-
tures are missing and which are present. As suggested by
Drygajlo and El-Maliki [7], generalized SS may be used
as a missing feature detector:

M(m, l) − αN̂ (m, l)
M(m,l) “present”

≷
M(m,l) “missing”

βN̂ (m, l),

with typically β = 0. It was experimentally found that

α = 3 produced the best EER results and this was used

throughout this work. This suggests that overestimating
the amount of noise energy is preferred and relates to the
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ise vs. speech information removal trade-off.

Assuming the criterion for detecting missing features

ve is appropriate, a “perfect” missing feature detec-

is available for cases where AWGN is added since

th the clean linear Mel-energy feature as well as its

rupted version are available; N̂ (m, l) is known per-

tly. In contrast is the “imperfect” detector, where

expressions above still hold but the noise estimate

m, l) is derived from averaging features during non-

ech frames.

Of interest is the similarity between decisions made

the imperfect detector, using only an estimate of

m, l), and those made by a perfect detector, which has

ess to the actual noise component N (m, l). The cor-

ation between the perfect and imperfect missing fea-

e detectors for each feature was studied in an AWGN

ironment at SNR levels from 5 dB to 20 dB. For

st features the correlation, averaged over the range of

GN studied, between the perfect and imperfect (with

3.0) missing feature detectors was high, greater than

and closer for 0.9 for the majority. Hence at various

R levels the imperfect detector’s decisions will closely

emble those of the perfect missing feature detector for

st features under AWGN. Also of interest is the sim-

rity between perfect and imperfect detectors with re-

ct to other aspects of MFD, such as the average num-

of times a particular feature is declared missing per

me and the total number of missing features declared

ssing per frame. These were also measured at vari-

s SNR values in an AWGN environment. For the for-

r study, at 20 dB, it was again found that for α = 3.0
match was close with the typical deviation being 0.02

tures/frame, the maximum deviation occuring for the
th feature at roughly 0.05 features/frame. The results

the latter study, with 20 dB AWGN, may be seen in

ure 2, where very similar behaviour is observed. The

aker recognition performance of MFC with both the

fect and imperfect missing feature detectors relative

the baseline case was studied. As before, all tests were

in clean/test dirty (AWGN) and the performance met-

was EER. The results are in table 2. The cases with

NR (dB) Baseline Perf. MFD/MFC Non-Perf. MFD/MFC

5 44.3 44.3 45.2

10 39.5 39.7 40.7

15 32.5 34.8 34.2

20 22.7 19.9 19.9

25 18.7 14.9 15

le 2: EER values for various scenarios of perf/imperf. MFD

FC.

C are very similar, with the maximum deviation being

s than 1% at lower SNR values. While the application

MFC at lower SNR values degrades performance, at

her SNRs of roughly 17 dB or more the MFC begins

outperform the baseline case. At noise levels starting



Figure 2: Frequency per frame that a given total number of

missing features are detected by the perfect (α = 3.0) and non-

perfect missing feature detectors (α = 1.0 and 3.0).

at 20 dB the improvement over the baseline rises to ap-

proximately 3 ∼ 4%.

The lack of uniform improvement at different SNRs

using MFC is likely due to the noise vs. speech informa-

tion trade-off, seen in figure 1. At a critical point of noise

compensation via MFC, the loss of speech information

accompanying the removal of missing features causes a

catastrophic loss of necessary speaker information.

4. Cascade Noise Handling Systems

SS (hard and soft varieties) and MFC may be applied

jointly for further performance enhancement. To study

this, systems incorporating SS with MFC were used in

clean/dirty (AWGN) tasks with noise levels varying from

5 to 20 dB. Here logarithmic Mel-filter energies were

employed, the rest of the experimental set-up as before.

MFD was performed by imperfect detectors.

The results are in table 3. The combination of soft

SS and MFC outperforms the pure soft SS system, the

combination of hard SS and MFC, as well as the base-

line. This trend holds at all SNR levels and achieves a

reduction in EER by an average of as much as ≈ 15% at

the various SNR levels tested. The next best system was

the pure soft SS system, which was outperformed by the

combination system at all SNR levels by ≈ 10%. Thus,
for the particular channel and training/testing conditions
given, the system combining soft SS and MFC has been
shown to perform better than each system individually.

The resulting performance gain is equivalent to a 13 dB

gain as measured by equivalent noise power.
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Case 5 dB 10 dB 15 dB 20 dB 25 dB

oft SS/MFC 32.3 22.4 15.9 8.2 6.7

Soft SS 35.2 31.4 25.5 18.1 15.3

ard SS/MFC 36.2 33.0 25.5 18.6 17.4

Hard SS 40.9 35.8 33.4 28.7 23.5

Baseline 44.1 39.3 32.5 22.8 18.6

le 3: EER values (%) for various combinations in

an/clean + AWGN scenario.

5. Conclusion
is paper has studied missing feature theory and MFC,

bined with SS [2]. Unlike other methods that en-

ce noisy features, here highly corrupted features are

imated and removed from inclusion in the GMM based

ring mechanism.

The problem of MFD was also discussed. Through

relation studies it was found that a working imperfect

ssing feature detector, using an estimate of the back-

und noise spectrum, produced decisions very close to

se of the perfect missing feature detector with the true

ise spectrum under the noise scenarios considered.

The MFC system’s results, as with the soft SS sys-

, depend on the SNR. At low SNR values the system

formed below the baseline by about 1% and at high

Rs it improved the EER by close to 4%. Finally, the

nt combination of soft SS and MFC was considered,

in in a clean/dirty task with AWGN. This combination

proved performance over the baseline and the perfor-

nce seen by each technique applied individually. For

SNR range of 5 - 25 dB it was found to outperform the

eline case with respect to EER by ≈ 15%. In future

rk we will study the application of these methods to

ual corrupted speech, moving beyond synthetic noise.
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