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Abstract

This paper describes ongoing research aiming at the descrip-
tion of variation in speech as represented by asynchronous ar-
ticulatory features. We will first illustrate how distances in
the articulatory feature space can be used for event detection
along speech trajectories in this space. The temporal structure
imposed by the cosine distance in articulatory feature space
coincides to a large extent with the manual segmentation on
phone level. The analysis also indicates that the articulatory
feature representation provides better such alignments than the
MEFCC representation does. Secondly, we will present first re-
sults that indicate that articulatory features can be used to probe
for acoustic differences in the onsets of Dutch singulars and
plurals.

Index Terms: articulatory features, automatic speech recogni-
tion, speech decoding, lexical differentiation.

1. Introduction

Virtually all approaches in automatic speech recognition (ASR)
systems assume that the information in the speech signal and
ASR dictionaries can be represented in terms of sequences of
discrete symbols (e.g. phone-like symbols). This beads-on-
a-string paradigm ([9], which goes back to e.g. [16]), forces
a less than optimal representation of variation in speech since
variation (due to pronunciation variation, speaking styles, inter-
speaker differences, accents etc.) primarily takes place in a con-
tinuous domain, often with effects on the sub-phonemic level,
rather than in a discrete domain. The description of variations
in a continuous domain by discrete symbols is evidently a re-
sult of compromises (cf. [1]). It can therefore be argued that
fundamentally better ways to model variation in speech can
be achieved by modeling the underlying pronunciation process
rather than modeling the surface effects on the resulting acous-
tic speech signal. In this area, progress has been made by using
specifically trained articulatory feature classifiers ([4], [6], [10],
[12], [7]). The choice of the set of articulatory features is largely
inspired by both the theory of distinctive features ([3]) and the
gestural theory of speech production ([2]).

In this study, we describe ongoing research that aims at a de-
scription of the variation in speech by use of articulatory fea-
tures (AF). As in [4], [18], we apply AF classifiers using a fea-
ture set including manner of articulation, place of articulation,
voicing, front-back and rounding. The combination of the AFs
results in a sequence of vectors (updated each 10 ms) defining a
trajectory in AF space.

Compared to other representations, AFs offer two advantages.
First, AFs provide a description of the speech signal allowing
loose synchrony between articulatory features, in contrast with
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linear phone representations which explicitly impose strictly
synchronous feature transitions. Secondly, AFs make it possi-
ble to provide a strong link between variation in speech and the
relevance of fine phonetic details in human speech processing.
There is a growing number of indications that human lexical
decoding is mediated by subphonemic details (e.g. [15], [19]).

In this paper, we will first describe a framework in which
AFs are used for event detection. We will use the term event to
mark a salient, sudden change in the trajectory. Trajectories are
endowed with a temporal structure by using a distance in AF
space, and we will compare this structure with manual segmen-
tation. Another approach to impose a structure on the bottom-
up derived AF streams is based on Dynamic Bayesian Networks
DBN (e.g. [13]) or on parsing [5]). The method presented here
can be regarded as an alternative and complementary way to re-
late event-detection and structure in the speech signal.
Secondly, we will describe experiments showing how artic-
ulatory features can be used to distinguish different word
types. Recently, studies have observed systematic differences in
acoustic duration between words in isolation (e.g., ham) and the
same words embedded in longer words (e.g., hamster) [19, 23].
In Dutch, the duration of a syllable is dependent on the number
of syllables that follow in the word and may therefore mediate
word differentiation. [21, 22] have shown that such durational
differences indeed bias the listener’s interpretation. Already be-
fore the vowel of the suffix is actually perceived, listeners per-
ceive whether a singular or a plural is involved. Our modeling
experiments show that AFs form a powerful and interpretable
representation in the computational modeling of similar effects.

The organisation of this paper is as follows. The next sec-
tion is devoted to a brief introduction to the design and training
of the AF classifiers. The third section describes the database of
spontaneous speech that was used in this study, while the fourth
section discusses two applicatons: event detection by distance
measures in AF space, and the use of AFs in the modeling of
perceptual differences on the basis of word onsets. The final
section concludes with a discussion and remarks for further re-
search.

2. Articulatory Feature Classifiers

In line with current approaches in this area (e.g. [4]), articu-
latory features are derived from the signal by using Artificial
Neural Nets (ANN). For the ANNs used in this paper, we ap-
plied the NICO-toolkit ([11]). Each of the six features (manner,
place, front-back, voicing, rounding, and static (see table 1) is
represented by one ANN. Each ANN is trained on canonical
feature transcriptions on the basis of a phoneme transcription
of the speech signal and a phone-to-feature table. Put in paral-
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Table 1: The six features with the 28 values used in this study.

[ Features [ Card [ Values |

manner 6 approximant, fricative, nasal,
stop, vowel, silence

place 7 (labio)dental, alveolar, velar,
high, mid, low, silence

voicing 3 voiced, voiceless, silence

rounding 4 rounded, unrounded, nil, silence

front-back 5 front, central, back, nil, silence

static 3 static, dynamic, silence

lel, the six AF classifiers provide information without any im-
posed structure: the strict dependency of the features observed
on the canonical training samples is lost due to independency
between the classifiers, and so on a test set AF output vectors
may show feature asynchrony and deviate from the canonical
0/1 AF vectors. The AF output consists of 28 parallel analog
values between 0 and 1, updated every 10 ms.

3. Database description

In this study, we have used the IFAcorpus ([14]), a database
of spoken Dutch. It contains recordings of 4 male and 4 fe-
male speakers, varying from 15 to 66 years in age. For all
utterances, manually corrected labelling and segmentation on
phone and word level are available. Metadata include education
level, birth place, and smoking habit and contain more informa-
tion than is available in the much larger Spoken Dutch Corpus
(CGN, [8]). The transliteration of the IFAcorpus is according
to the CGN-protocol. Compared to CGN, the amount of speech
per speaker is much larger (40 min/speaker) and more speaking
styles have been recorded (8, varying from spontaneous mono-
logues to read-aloud word lists). A number of 19867 utterances
have been transcribed (a bit more than 5 hours). Two subcorpora
(retold stories in the form of long monologues, and randomly
presented sentences, in total about 140 minutes of speech) have
been selected for this study. The total number of utterances
is 2650. All speech material has been converted to 16 kHz 16
bits/sample mono wav files. The phone alphabet was cleaned up
to contain 50 different phones apart from the basic phones, the
IFAcorpus also uses palatalised variants. There is one silence
symbol. The selected subcorpus was divided into a training set
(1978 utterances), a validation set (100) and a test set (572 utt;
44m10s). The test set consisted of the speech from one male
and one female who were kept separate, while speech from the
other 6 speakers was used for training and validation.

The training and validation set have been applied for the
training of the six different ANNs. Table 2, second column,
shows the classification results on the IFAcorpus test set (the ac-
curacy of the individual classifiers on frame level in percentage
correct). For the sake of comparison, we added the ANN re-
sults obtained on the TIMIT test set after training on the TIMIT
training set, but since transcription methods and database spec-
ifications differ in detail, a further cross-database comparison
hardly makes sense. After training, the classifiers were used to
produce AF vector sequences for test data, overall resulting in
about 265000 vectors of dimension 28.
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Table 2: Frame-based accuracy of individual feature classifiers
(in perc.) on the IFA-corpus and TIMIT test set.

| Features | IFA-corpus | TIMIT |
manner 84.7 86.5
place 76.7 78.6
voicing 93.5 92.0
rounding 87.4 86.0
front-back 83.6 83.0
static 89.7 81.0

Table 3: Alignment results for three distances and two sig-
nal representations. Corresponding thresholds are indicated be-
tween brackets. For an explanation see the text.

| repr. | cosine | Euclidean | city-block |
AF 40, 89, 3.1 (0.21) | 39, 88,3.2(0.20) | 34,83,5.1(0.41)
MFCC | 34,79, 6.1(0.85) | 32,81,9.0(325) | 35,79,4.9 (106)

4. Two applications of AF representations
4.1. Bottom-up alignment with manual segmentations

Given a certain distance function D, event along a trajectory
vy Un—1,Un,Un+1,... may be defined by the moments on
which D(v;_1,v;) exceeds a certain threshold 6 (of which the
optimal value depends on the type of distance). It has been
shown ([18]) that this technique yields promising alignment
results between events and manual phone-level segmentations
when D equals the cosine distance (eq. 1) and the v; represent
AF vectors.

(v(l) \ v(2>)

D = arccos W

)]
This difference is further elaborated in table 3. The ta-
ble shows alignment results between the event detection and
the manual segmentation for three distances (cosine, Euclidean,
city-block) and two representations (MFCC, AF). The figures
indicate the percentage of frames with an exact match, with an
match within 25 ms, and without a manual segment boundary
within 5 frames, respectively. The optimal threshold 6 is given
between brackets. For example, for the combination (cosine,
AF), 40 percent of the cosine peaks coincide with the man-
ual boundary, while 89 percent could be assigned a boundary
within 25 ms from the cosine peak, and 3.1 % (215 out of 6810
cosine-maxima) could not be associated with a segment bound-
ary within the range [-5, 5]. For all other combinations the
alignment is worse, but the Euclidean distance performs almost
equally well. The value of 89 percent within 25 ms is compa-
rable to the accuracy of 84 percent within 20 ms (reported in
[17], table 5) for the position of phone boundaries by automatic
segmentation.
This alignment result is not coincidental. Theoretically, it might
be the case that all point processes with a similar statistics as
the manual segmentation can be aligned with the same success
rate. This possibility, however, turns out to be less likely since
(a) it appears that the manual segmentation distribution is very
similar to a Poisson distribution with A = 5.7 (see figure 1),
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Figure 1: Histograms of segment durations (stars) and the Pois-
son distribution (A = 5.7) (+4-signs).

and (b) the alignment between the cosine peaks and a Poisson
process with A = 5.7 is significantly different from the align-
ment between the cosine peaks and the manual segmentation
(x* =11.6,nf = 2, p < 0.01).

In order to apply AF representation to study fine temporal-
phonetic details, probably a time resolution finer than 10 ms is
required. This is suggested by figure 2, which shows over 80 re-
alisations of the transition d-schwa. Increasing (solid line) and
decreasing (dashed) plots display the feature value *vowel’ and
*plosive’, respectively. All plots are overlaid such that the man-
ual segment boundary is halfway between frame 5 and 6. The
coarse resolution due to the 10-ms time frame shift is clearly
visible.

4.2. Relevance of fine phonetic details in word onsets

As mentioned above, listeners can perceive subtle differences
between words in isolation (e.g., ham) and the same words
embedded in longer words (e.g., hamster) [19, 23]. In order
to investigate how differences other than duration differentiate
Dutch singulars and plurals, an experiment was conducted using
AF representations of acoustic realisations of Dutch singulars
and plurals.

4.2.1. Materials

For 47 nouns, we recorded several tokens of the singular and
plural form, read by a female native speaker of Dutch. All plu-
rals were bisyllabic words ending in the plural suffix -en, all
singulars were monosyllabic. The number of singular tokens
ranged from 2 to 5, the number of plural tokens ranged form 14
to 20. In all, 993 tokens were recorded, and digitized at a sam-
ple rate of 44 kHz. For each token, the corresponding matrix of
scores was calculated. The average duration of a token was 54
timesteps. The plural forms (range 35-85) tended to be shorter
than the singular forms (range 23-97) by 5 timesteps (i.e., by
approximately 50 ms, p < 0.0001, mixed-effect anova with
word as random stratum). For each word, 2 tokens of the singu-
lar and 14 tokens of the plural form were randomly selected for
training, the remaining tokens (maximally 3 singulars, 6 plu-

20
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Figure 2: Feature values (plosive, vowel) over time for /d/-
schwa.

rals) were held out for testing.

4.2.2. Results

We fitted a stepwise logistic regression model to the data with
the log odds of plural to singular as the dependent variable, and
the acoustic feature values as predictors. An initial mixed-effect
analysis with Word as random effect revealed negligeable vari-
ation for this factor (6 < 0.0001). We therefore removed Word
as a predictor from the model. A stepwise logistic regression
analysis suggested significant predictivity for the feature values
labiodent (3 = 11.9, & = 3.18, Z = 3.73, p = 0.0002),
unvoiced (8 = 2.570, 6 = 1.0413, Z = 2.47, p = 0.0136),
voiced (8 = 0.782, 6 = 0.3007, Z = 2.60, p = 0.0093),
back (8 = 2.336, 6 = 0.8403, Z = 2.78, p = 0.0054),
static-nil (8 = 3.156, 6 = 0.4662, Z = 6.77, p =
0.0000), and static (8 = 1.701, 6 = 0.4282, Z = 3.97,
D 0.0001). Although significant, the features succeeded
in accounting for only a tiny proportion of the variance. The
bootstrap-corrected R? was 0.025 and the bootstrap-corrected
value of Somers D., = 0.21. All 6 predictors were retained
in 156 out of 200 bootstrap runs using a backwards variable
elimitation algorithm [20].

A t-test on the predicted probabilities for the singular and
plural revealed a highly significant p < 0.0001 difference in
probability of 2% (mean predicted probability singular: 0.86,
mean predicted probability plural: 0.88). When applied to the
held-out singulars and plurals, a ¢-test on the predicted probabil-
ities for the held-out singulars and plurals revealed a significant
(p < 0.0001) difference in probability of 1% in the expected
direction (mean predicted probability singular: 0.87, mean pre-
dicted probability plural: 0.88).

These results suggest that there are subtle qualitative dif-
ferences in the fine phonetic detail in the first 50 ms of Dutch
singulars and plurals. The plurals in our data appear to have
been realized with more acoustic detail for labio-dental place of
articulation, more detail for voicing, and more to the back of
the mouth. The evidence for staticity is mixed, with one feature
value indicating that statisticity is irrelevant for plurals (Snvt)
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and another feature value indicating more evidence for staticity
(Sstatic). Considered jointly, the main pattern is that plurals
receive more careful articulation than singulars. In the light of
the shorter duration of the stem in plurals, this suggests that du-
rational shortening is compensated for by increased articulatory
detail.

5. Discussion and conclusion

We addressed variation in speech by aligning data-based events
with manual phone segmentations and by relating acoustic de-
tails in word onsets with word number. The obtained ap-
proaches are promising and simpler than HMM-based meth-
ods. The results directly show that AF representations are as
least as rich as manual segmentations on phone-level, and we
argue that it is in fact a richer representation due to feature
asynchrony. However, essentially different segmentations may
result from other distance measures. To what extent metrics
such as Kullback-Leibler show a similar performance is still un-
known.

Other issues under investigation are the use of asynchrony for
cue trading between AFs and the precise quantification of this
asynchrony. The variation of observed AF vectors around a
canonical AF vector is the combined contribution of both the
feature asynchrony and the statistical variation in the classifier
output, but this is still to be unravelled.

Finally, the observed relation between fine phonetic details and
word type discrimination opens a challenging research area. AF
representations provide an interpretable and rich representation
which appears useful for research on lexical decoding and fine
phonetic details.
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