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Abstract

A novel linear transform (LT) is proposed for frequency warp-
ing (FW) with standard filterbank based MFCC features. Here, we
use the idea of spectral interpolation of [9] to perform a continuous
warping in the log filterbank output domain, and incorporate both
interpolation and warping into a single warped IDCT matrix. The
new transformation matrix is thus mathematically simpler than in
[9], and no modification of standard MFCC feature extraction is
required like the previous approach. In VTLN experiments with
maximum likelihood score (MLS) estimation of the FW parameter,
the new LT outperformed regular VTLN implemented by warping
the Mel filterbank. In speaker adaptation experiments using the
new LT to transform HMM means, the results were significantly
better than MLLR for limited adaptation data and comparable to
those in [8], while using the computationally simpler MLS FW
estimation.
Index Terms: speech recognition, speaker normalization, fre-
quency warping, linear transformation, speaker adaptation

1. Introduction
Spectral frequency warping (FW) methods have proven to be very
effective in reducing the acoustic mismatch between a speech
recognition system and a new test speaker, particularly with lim-
ited adaptation data. FW is usually applied during feature extrac-
tion, as vocal tract length normalization (VTLN) ( [1]-[4]).

One method of estimating the FW is by aligning formant fre-
quencies or formant-like spectral peaks of the training and test
speakers, particularly the third formant (F3) [2, 5, 8]. More com-
monly, the warp factor(s) controlling the FW is(are) estimated by
optimizing a maximum likelihood (ML) criterion [1, 3, 4, 7].

FW of the spectrum may be shown to be equivalent to a linear
transformation in the cepstral space ([3, 6]). This is also true for
cepstral features which are based on Perceptual Linear Prediction
(PLP) or by Mel warping of the frequency axis ([7, 4]).

The linearity of the transformation of cepstral features con-
fers some important advantages. Firstly, for VTLN, one can apply
the FW transform to previously computed features and not have
to recompute features with different warp factors during FW esti-
mation. This results in significant computational savings [9]. Sec-
ondly, the linearity enables one to take the expectation and thereby
apply the same transformation to the means of the HMM distribu-
tions [5, 6]. In this way, different transforms can be estimated for
different classes of HMM distributions, unlike VTLN where the
same transformation is applied to all speech features [7].

Therefore, approximate linear transforms have also been de-
veloped for FW with standard Mel frequency cepstral coeffi-
cient (MFCC) features computed using a filterbank and the DCT
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, 9]. Claes et al. derived an approximate linear transform for
l warping factors [5]. Cui and Alwan [8] derived a simpler
r transform that may be shown to be a special case of Claes et
transform (see Section 2), but was demonstrated to give better
rmance when used for speaker adaptation [8]. Their trans-
was in effect an “index mapping” on the filterbank outputs,

one filterbank output was mapped to another, based on a FW
ated in the linear frequency domain by alignment of formant-

peaks.
Umesh et al. [9] showed that under the assumption of que-
y limitedness, the computation of the cepstral linear transfor-

on in [3] could be considerably simplified using the idea of
interpolation of the log spectrum. They also extended the lin-
ransformation to MFCCs by separating the filterbank smooth-
which leads to approximate quefrency limiting) and frequency
ing operations thus modifying the standard MFCC feature ex-
ion scheme.
In this paper, we develop a novel linear transform by using
dea of spectral interpolation in [9], to perform a continuous
ing of the log filterbank outputs instead of the discrete map-
in [8]. The interpolation and warping are performed together

g a single warped IDCT matrix, and the resulting transform is
fore mathematically simpler than that in [9] and unlike [9],
odification of the standard MFCC feature extraction scheme

quired. The mathematical details are given in Section 3.
The warping in the IDCT matrix is parametrized and the pa-
ter can be estimated directly by maximizing the likelihood

e, without using the intermediate linear frequency spectrum as
]. With a smooth parametrization of the FW, there is also the
ibility of estimating more flexible multiple parameter FWs by

ization techniques as in [7, 10].
The rest of this paper is organized as follows. In Section 2 we
w previous work on FW as a linear transformation on MFCCs
ore detail. The matrix for the new linear transformation is
ed in Section 3. We then consider the estimation of FWs in

ion 4 and experimental results are presented in Section 5.

FW as Linear Transformation of MFCC
dard MFCC based features are computed as shown in Fig-
, using a filterbank which is usually as shown in Figure 2,
half-overlapping filters whose center frequencies are spaced
lly apart on the Mel scale.
The MFCCs are therefore given by

c = C · log(H · S) (1)

re S is the power or magnitude (linear frequency) spectrum
ally obtained as a vector for a given windowed speech frame
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Figure 1: Standard MFCC computation.
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Figure 2: The shape of the Mel filter bank shown for the case when
fs is 8kHz and the number of filters is 15.

using the FFT, H is the Mel filterbank matrix, and C is the DCT
matrix.

A non-linear FW transform for MFCCs may be derived as in
[5]:

ĉ = C · log{H · W · H−1 · exp(C−1c)} (2)

where W is the warping matrix in the linear frequency domain, and
H−1 and C−1 are (approximate) inverses of H and C respectively.

Claes et al. [5] have shown that for small frequency scaling
factors the transformation of the cepstrum in Equation 2 may be
approximately linearized to

ĉ ≈ (CB̄C−1)c + Cd (3)

where B̄ is the matrix obtained from B = H · W · H−1 by
normalizing each of the rows of B so that the sum of the el-
ements in each row is 1: B̄(i, j) = B(i, j)/ j B(i, j), and
d(i) = log j B(i, j).

Cui and Alwan [8], approximated H , W and H−1 in Equation
2 by carefully chosen index mapping (IM) matrices, which are ma-
trices in which each row contains only one nonzero element which
is 1. Then, it is not difficult to see that the exponential and the log-
arithm in Equation 2 cancel each other out, and the transformation
becomes

ĉ = (CHWH−1C−1) · c (4)

Note that when H , W and H−1 are IM matrices, so is B =
H · W · H−1 and so in Equation 3, B̄ = B and d = 0 and
therefore Equation 3 reduces to Equation 4. Cui and Alwan’s lin-
ear transform is therefore mathematically a special case of Claes
et al’s transform.

Since HWH−1 is an IM matrix, the transformation amounts
to an index mapping on the approximate log-filterbank output L =
C−1c. i.e., filterbank outputs are just replaced by other filterbank
outputs depending on W which is estimated in the linear frequency
domain by alignment of formant-like peaks.

This suggests the possibility of estimating and applying FWs
directly on the log Mel spectrum L. This would eliminate the need
to estimate a linear frequency spectrum S using an approximate
inverse of the filterbank. Also, since the dimension of L is usu-
ally much smaller than that of S, this also reduces the computa-
tional requirement in the estimation and application of the adapta-
tion transform.

In [9], Umesh et al. use the ideas of quefrency limitedness and
sinc interpolation to show that any linear frequency warping may
be applied as a linear transformation on plain cepstra C:

C̃ = D · C (5)
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e the matrix D depends on the linear FW g(ω).
n their approach, the MFCC feature extraction scheme was
ified by separating the filterbank smoothing and Mel warping
ations. The filters of their filterbank were uniformly spaced
e linear frequency domain, but of uniform bandwidth in the
domain. Unwarped DCT-cepstra are computed using a DCT
he log of the filterbank output l = {log |XF B [q]|2, q =
. . . , M − 1}:

d = T1 · l (6)

e T1 = C is the DCT matrix used in standard MFCC com-
tion. The warping, including Mel and VTLN warping is to be
ied as a matrix on d. But for the purpose of frequency warp-
the “plain” cepstra are first computed as

C = T2 · l (7)

e T2 is a DCT matrix different from T1.
el and/or VTLN warping were applied on C by transforming

as in Equation 5 and then recomputing the DCT-cepstra after
puting the warped log filterbank outputs. The final warped
tra may be shown to be:

d̃ = (T1T
−1
2 DT2T

−1
1 )d (8)

D(mel) for regular Mel warping and D = D(mel, α) for
warping followed by VTLN warping. Since we must have
el, α) = D(α)D(mel) it can be shown that the Mel &
N warped cepstra d(mel, α) are related to the Mel warped
tra d(mel) by:

d(mel,α) = (T1T
−1
2 D(α)T2T

−1
1 ) · d(mel) (9)

he cepstral transformation matrix in Equation 9 is quite com-
ted because of the use of the “plain” cepstrum for FW. How-
a much simpler matrix for linear transformation of cepstra
be derived by direct warping of the cosine interpolated log
spectrum. We will discuss this next.

Derivation of the Transformation Matrix
a unitary DCT matrix C, we have C−1 = CT , and the equa-
L = C−1c = CT c may be written in expanded form as

m) =

N−1

k=0

c(k)αk cos
π(2n − 1)k

2M
, m = 1, 2, . . . , M

(10)
e c(k), k = 0, 1, . . . , N − 1, are the MFCCs and

αk =

1
M

, k = 0

2
M

, k = 1, 2, . . . , N − 1

actor that ensures that the DCT is unitary.
sing the idea of cosine interpolation one can consider the

T approximation of Equation 10 to describe a continuous log
spectrum L(u), where u is a continuous “Mel” frequency
ble:

L(u) =

N−1

k=0

c(k)αk cos
π(2u − 1)k

2M
(11)

L(m) = L(u)|u=m, m = 1, 2, . . . , M



One detail is the range of values that u can take. L(u) as described
in Equation 11 above is periodic with a period of 2M , and is sym-
metric about the point u = M + 1

2
. Therefore, we may take the

range of u to be
1

2
≤ u ≤ M +

1

2
.

We will apply frequency warping functions on u, which are
obtained by as follows. Let λ be a normalized frequency with
0 ≤ λ ≤ 1. We can pass from the continuous Mel domain u to the
normalized frequency domain λ and vice versa by the transforma-
tions

u → λ =
u − 1/2

M
,

1

2
≤ u ≤ M +

1

2

λ → u =
1

2
+ λM, 0 ≤ λ ≤ 1

Let θp(λ) be a normalized FW function controlled by parameter(s)
p (see Eqs. 22 and 23). Then we can obtain a warping ψp(u) on
u, using

ψp(u) =
1

2
+ M · θp

u − 1/2

M
(12)

Note that if λ = 0 and λ = 1 are fixed points of θp(λ), then u = 1
2

and u = M + 1
2

as fixed points of ψp(u).
We now take the inverse FW function to be applied to u to be

ψp(u). The warped log Mel spectrum is then:

L̂(u) = L(ψp(u))

=

N−1

k=0

c(k)αk cos
π(2ψp(u) − 1)k

2M
(13)

The warped Log filterbank output is

L̂(m) = L̂(u)|u=m, m = 1, 2, . . . , M (14)

In vector form,
L̂ = C̃p · c

where C̃p is the warped IDCT matrix:

C̃p = αj−1 cos
π(2ψp(i) − 1)(j − 1)

2M 1≤i≤M
1≤j≤N

(15)

The transformed MFCCs are given by

ĉ = C L = (CC̃p) c

= Tp c (16)

Hence, the warped MFCCs may be obtained by a linear transfor-
mation of the original MFCCs, and the transformation matrix is
given by

Tp = (CC̃p) (17)

where C̃p is the warped IDCT matrix given in equation 15.

Comparison with previous transforms:
Comparing our linear transform in Equation 17 with that of

[9] in Equation 9, it is clear that our linear transformation is mathe-
matically much simpler without any change to the standard MFCC
feature extraction scheme as in [9].

Also since the warping is incorporated directly into the IDCT
matrix, the FW parameter(s) p can be estimated directly using an
MLS criterion (see Section 4), without using the intermediate lin-
ear frequency domain as for [8] (Equation 4).
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sformation of Features and HMM means:
The final feature vector x consists of the MFCCs and their first
second time derivatives. The transform on the time derivatives
e cepstral features will also be linear [5, 8]:

Δc = TpΔc (18)

Δ2c = TpΔ
2c (19)

efore, the feature vector x =
c

Δc
Δ2c

may be transformed

xp = Apx, where Ap =
Tp 0 0
0 Tp 0
0 0 Tp

(20)

re the transformed feature vector xp is now a function of the
parameters, p. Taking the expectation, the mean μ of a given

distribution may be transformed as [5, 8]:

μ̂ = Apμ, (21)

Examples of Frequency Warping Functions:

. Piecewise Linear These are the type of FW functions that
are most commonly used in vocal tract length normalization
(VTLN) in the front-end as in [3].

θp(λ) =
pλ, 0 ≤ λ ≤ λ0

pλ0 + 1−pλ0
1−λ0

(λ − λ0), λ0 < λ ≤ 1

(22)
. Linear This FW can be used for adaptation from adult

models to children’s models, where the original models
have more spectral information than necessary for chil-
dren’s speech. They may be used for a global adaptation
of all the means before subsequent multi-class adaptation.
For p ≤ 1,

θp(λ) = pλ, 0 ≤ λ ≤ 1 (23)

4. Estimation of the FW function
maximum likelihood score (MLS) criterion is commonly used
TLN estimation ([1, 3]), to estimate the optimal FW parame-

p̂:
p̂ = arg max

p
[log P (Xp, Θp|W,Λ) + T log |Ap|] (24)

re p is(are) the FW parameter(s), xp = Apx is a nor-
zed feature vector, |Ap| is the determinant of Ap, Xp =
xp

2, . . . ,x
p
T } is the normalized adaptation data, W is the

(or other unit) transcription, Λ are the corresponding HMMs,
Θp is the ML HMM state sequence with which Xp are aligned
p by the Viterbi algorithm during ASR decoding.
For regular VTLN by Mel bin center frequency warping [1],
bjective function only includes the first term in Equation 24.
r experiments with the Linear Transformation too, the deter-
nt term was not used since better results were obtained with-
t.
The same MLS criterion can also to be used to estimate the
parameters to be used to transform the means of the HMMs as
uation 21:

p̂ = arg max
p

[log P (X,Θp|W, Λp)] (25)

re the variables are as explained above for Equation 24 except
here it is not the adaptation data but the HMMs Λ that are
ified to Λp for FW parameters p.



5. Experimental Results
We tested the developed linear transform on connected digit recog-
nition of children’s speech using the TIDIGITS database. The
baseline system was the same as in [8]. 20 HMMs including 18
monophone models and the silence and short pause models, were
trained for connected digit recognition from the adult male speak-
ers in TIDIGITS. The number of states per monophone varied from
2 to 4 with 6 Gaussian mixtures in each state. The features used for
speech recognition consisted of the first 13 MFCCs and their first
and second time derivatives. Ten children, five boys and five girls
were selected for testing. The baseline recognition word accuracy
was 38.9 %. Tables 1 and 2 show the results of VTLN and speaker
adaptation experiments respectively, with 1, 5 and 11 digits used
for adaptation.

Table 1: Recognition Accuracy in VTLN Experiments: (1) MLLR
(2) Regular VTLN by Mel Bin Center Frequency Warping (3)
VTLN with Our Linear Transform (LT-VTLN)

Number of adaptation digits
Algorithm 0 1 5 11

MLLR 38.9 40.6 63.4 90.9
Regular VTLN 38.9 80.8 82.7 86.9
New LT-VTLN 38.9 89.1 90.4 90.9

The results in Table 1 demonstrate the effectiveness of VTLN
using the new linear transformation (LT-VTLN) over regular
VTLN performed by warping the center frequencies of the Mel
filterbank. In both cases, an optimal speaker-specific warp fac-
tor for the piecewise-linear FW was estimated from the adaptation
data, using a grid search to optimize the MLS criterion of Sec-
tion 4. In [8], VTLN warp factors were estimated on a per utter-
rance basis, therefore with different recognition results. A speaker-
specific warp factor is computationally simpler and was also con-
sidered more appropriate for a comparison with MLLR. For the
LT-VTLN, the Jacobian normalization actually resulted in worse
performance and was therefore not used. The results are compared
with Maximum Likelihood Linear Regression (MLLR) [11] with
a full regression matrix (which gave better results than the 3-block
structure used in [8]). LT-VTLN consistently outperforms regu-
lar VTLN, and both outperform MLLR for small amounts of data,
as expected. For more than 11 adaptation digits, MLLR starts to
perform better than LT-VTLN.

Table 2: Recognition Accuracy in Speaker Adaptation Experi-
ments

Number of adaptation digits
Algorithm 0 1 5 11

MLLR 38.9 40.6 63.4 90.9
Peak Alignment 38.9 86.7 88.3 89.2
New LT, MLS 38.9 87.0 89.2 89.4

The results in Table 2 demonstrate the effectiveness of adap-
tation of HMM Means in the back end using the new linear trans-
formation. The performance is compared with that of the Peak
Alignment based adaptation approach of [8] (with only the FW
transform), and the results are comparable. However, the FW pa-
rameter for our new LT was directly estimated by a grid search
with the computationally simpler MLS criterion while the Peak
Alignment approach used alignment of F3 estimated from the in-
termediate linear frequency spectrum.
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6. Conclusions
ovel linear transform was developed for frequency warp-
with standard filterbank based MFCC features by a smooth
metrization of the discrete FW transform introduced in [8],
g the spectral interpolation idea in [9]. Using cosine inter-
tion in the log filterbank output domain, the derived trans-
ation matrix was much simpler mathematically, than that in
In Vocal Tract Length Normalization (VTLN) experiments the
linear transform outperformed regular VTLN implemented by
ing the center frequencies of the Mel filterbank, when a max-

likelihood score (MLS) criterion was used to estimate FW
meter for both methods. Results comparable to those in [8]
obtained for adaptation of HMM means using the new Linear

sform with the computationally simpler MLS criterion used to
ate the FW parameter.
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