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Abstract
Traditionally, Perplexity has been used as a measure of language
model performance to predict its goodness in a speech recogni-
tion system. However this measure does not take into account the
acoustic confusability between words in the language model. In
this paper, we introduce Equivocality – modification of the per-
plexity measure for it to incorporate the acoustic features of words
in a language. This gives an improved measuring criterion that
matches much better with the recognition results than conventional
Perplexity measure. The acoustic distance is used as a feature to
represent the acoustic characteristic of the language model. This
distance is measurable only with the acoustic model parameters
and does not require any experimentation. We derive the Equiv-
ocality measure and calculate it for a set of grammars. Speech
recognition experiments further justify the appropriateness of us-
ing Equivocality over Perplexity.

Index Terms: perplexity, language model, acoustic distance, word
error rate.

1. Introduction
Language modeling has been used in speech recognition systems
to reduce the acoustic search space. For constrained tasks such as
conversational systems, grammars are typically used to represent
the language model for each user input. The perplexity of these
grammars is (supposedly) a measure of the difficulty of recognis-
ing the grammars by a speech recognition system. Though the true
quality of a language model or a grammar can be evaluated only
by performing a speech recognition experiment, but performing
this experiment may not always be possible. Therefore Perplex-
ity is used to evaluate the grammars and language models in a
isolated manner. It provides an information theoretic measure for
predictability of a language syntax. Although perplexity does not
use any phonetic character of the words in a language, this has
been the most commonly used measure for comparing language
models and grammars for different tasks.

The correlation between grammar perplexity and the Word Er-
ror Rate (WER) of a speech recogniser is shown in [4]. However
there are cases when this correlation fails. In [2], a technique of
calculating the WER without requiring a speech recognition sys-
tem is presented. Modifications to the perplexity measurement
technique is also presented in [1]. Here the authors adapt the
Shannon game for evaluation of language models.

In this paper, we demonstrate that the perplexity measure of
speech recognition grammars do not have a close correlation with
the corresponding WER. We establish this by performing relevant
experiments in Section 2. We then formulate the measurement of
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stic characteristic of the corresponding grammar. If a gram-
has words that are acoustically similar (confusing), then that
mar is expected to give a higher WER compared to an exactly

ilar structured grammar, but with different sounding words. We
ne the acoustic distance between words and present a measure
he confusability of the grammar in the acoustic space. We
present a formulation that incorporates these acoustic distance
een words in a information-theoretic framework. Section 3

ents this solution. We substantiate the Equivocality measure
g several test grammars and by performing speech recognition
riments in Section 4. The improved correlation of Equivocal-
ith WER verifies the mathematical formulation. The paper

cludes with alternative ways for defining Equivocality in Sec-
5.

. BACKGROUND AND MOTIVATION
information theoretic view of the perplexity shows that the en-
y or the information per word that is associated with a word
ence (w1, w2, ..., wn) is defined as

H = − 1

n
[log2 P (w1, w2, ..., wn)] (1)

en a word sequence is less likely, the information content in
sequence is high, as is seen from equation 1. The term per-
ity PP is related to the entropy as seen below:

PP = 2H (2)

a grammar g that has 10 isolated words, with all being equally

ly, the perplexity is PP (g1) = 2−(log 1
10 ) = 10.

Since the measure for perplexity does not depend on the pro-
ciation (acoustic proximity) of these words, it will remain the
e for all 10–word grammars that have all the words as equally
ly. We use three grammars for conducting a speech recogni-
experiment. These grammars are shown in Table 1. Though

perplexity of these three grammars are the same, the WER is
different as seen in the table.

Table 1 implies that two grammars with the same perplexity
have different WER. But the absence of correlation between
perplexity and WER is highlighted by the grammars g1, g2

g3. In this example, the perplexity is not able to capture the
stic closeness of words that exist in a grammar. Therefore,
mars that have confusing words such as bait, bat and bet have

gher WER.

The above experiments were performed on an IBM ViaVoice
ch recogniser. The details of this recogniser are presented in
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Table 1: Perplexity and WER for isolated word grammars

Grammar Perplexity WER
g1 = zero|one|two|three|four 10 5
|five|six|seven|eight|nine

g2 = john|tom|sam|bon|ron| 10 7
|susan|sharon|carol|laura|sarah

g3 = bit|bite|boot|bait|bat 10 9
|bet|beat|boat|burt|bart

Section 4. These experiments clearly highlight the fact that per-
plexity is alone not a good measure of the performance of the
grammar in a speech recogniser. Additionally, the experiments
suggest that a notion of acoustic distance between words in a
grammar should provide more insights into the performance of the
grammar in a speech recognition system. This forms the basis of
this paper. In the next section we present the use of acoustic close-
ness in the perplexity measure.

3. OUR SOLUTION
With the examples in Section 2, it is clear that a measure that cap-
tures acoustic closeness between words along with the perplexity
should be more correlated with the WER. Perplexity is a measure
which is based on the amount of information that is received when
a particular work sequence occurs in the language. We model
Equivocality – it captures the amount of information that is re-
ceived when a particular word sequence is recognised. Therefore
we show that Equivocality provides a better estimate of the gram-
mar performance in a speech recogniser. In this section, we first
define a measure of acoustic confusability between words. Later
on we model Equivocality that uses the acoustic distance between
words in a information theoretic model.

3.1. Acoustic distance between words

Word confusability has been measured in the past through the
acoustic model and the phonetic content of each word [6, 3]. The
confusability metrics method has been used in [5]. We use the
confusability measures (similar to [6]) to formulate the measure
for distance between two words.

At a higher level, the distance between two words can be
extracted by using a string matching algorithm on the phonetic
spelling of two words. For example, the distance between the two
words bon and ron will be calculated as follows:

bon B OW N
ron R OW N

1 0 0

Thus the distance between these two words is 1 unit. On the other
hand, for words of unequal length, an insertion, deletion and a sub-
stitution can be considered as of unit length distance the complete
distance between words can be calculated by counting the num-
ber of such operations. These techniques are used in calculating
distance of one string from other and are well studied in the litera-
ture [7]. For example, the distance between sam and susan can be
obtained as follows:

sam S AE M
susan S UH Z AE N

0 1 1 0 1

The
tanc
inse
desi
vers
sam
avai
tanc

mea

whe
mod
ber
be n
spac
calc
we
tanc
to al
mea

3.2.

The
asso
rela
ime

by t
den

ties

How
that
reco
for
and

The

Usin

2223

INTERSPEECH 2006 - ICSLP
distance is thus 3. However it can be believed that the dis-
e between N and M is far less than the distance between an
rtion, i.e. between and UH . Thus a distance metric can be
gned such that it has different weights to an insertion/deletion
us a substitution. Moreover, not all substitutions may have the
e weight. If the Acoustic Model for a particular language is
lable, these distances can be calculated by measuring the dis-
e between gaussians of each phone as in [6].

In general, for any two words w1 and w2, the distance can be
sured by:

d(w1, w2) =
PX

i=1

dp(w
i
1, w

i
2) (3)

re dp(w
i
1, w

i
2) is the distance between the hidden markov

els of the two phonemes wi
1 and wi

2 and P is the total num-
of phones in each word, after insertions. This distance can
ormalised by the units of measurements that are based on the
e in which these HMMs have been trained. Different ways of
ulating distance between the HMMs are presented in [6] and
will not go into details of this measure. We measure the dis-
e between the two techniques – one that assigns equal weight
l insertion and substitutions and the other that uses the distance
sure in equation 3.

Equivocality

perplexity measure is based on the amount of self-information
ciated with a word sequence. In order to find a measure that
tes more closely with the WER in a speech recognition exper-
nt, we model Equivocality in this section.

As mentioned in equation 1, the self-information is measured
he probability of word sequences. If the words are indepen-
t, this can be written as

H = −
"

LX
i=1

Po(wi) log Po(wi)

#
(4)

where Po(w1), Po(w2, ..., Po(wn) are the original probabili-
of the occurrence of the words in a given grammar. So

nX
i=1

Po(wi) = 1 (5)

ever, in order to be effective for speech recognition, each word
can occur should also be correctly recognised by the speech
gniser. From this point of view, the probability of occurrence
each word can be subdivided into probability of recognition
of mis-recognition.

Po(wi) = Pr(wi) + Pmr(wi) (6)

refore

nX
i=1

Po(wi) =

nX
i=1

Pr(wi) +

nX
i=1

Pmr(wi) (7)

g 6 and 7, we have

nX
i=1

Pr(wi) = 1 − M (8)



where Pr(w1), Pr(w2, ..., Pr(wn) are the probability of recogni-
tion of these words and M represents the total probability of mis-
recognition by the speech recogniser. The value of M is depen-
dent on the acoustic confusability of the words in the grammar
and also on the speech recogniser. Since the speech recogniser can
be thought of as a constant performance system, the only variable
is the confusability of the words in the grammar. We use the mea-
sure of acoustic distance between words to formulate M . Further,
as seen from equation 8, the set of Pr(wi) probabilities are not a
complete probability set, but it is a representative of a significant
subset of the complete set Po(wi) that better correlates a gram-
mar with its speech recognition performance. This will be further
validated in Section 4.

In order to find the value for Pr(wi)’s, we calculate the acous-
tic distance of a word wi to all its alternatives, that is, words that
could potentially occur at the same position (linguistically) as wi.

Suppose there are n alternative words in the grammar at a par-
ticular linguistic position. Then, the average distance:

davg(wi) =

Pn
j �=i d(wi, wj)

(n − 1)
(9)

where d(wi, wj) is calculated as shown in equation 3. The average
distance measure davg(wi) captures of how distant (distinguish-
able) wi is from the rest of the words in the grammar. If there is
a single word in the vocabulary, then davg(w1) = ∞. If there are
at least two distinct words, then davg(wi) > 0 regardless of how
close the words might be. Therefore, 0 < davg(wi) ≤ ∞.

We now quantify the probability of mis-recognition of word
wi. Intuitively, the probability of mis-recognition of a word is pro-
portional to the probability its occurrence. The more frequently
a word occurs, the more likely it is to be mis-recognised (as well
as recognised). If two words occur with the same probability, the
word which has acoustically closer neighbours is more easily con-
fused and harder to recognise. We capture this simple intuition as
follows:

Pmr(wi) = f (Po(wi), davg(wi)) (10)

Since the proximity decreases with the increase of this distance
and vice versa, this inverse relationship results in:

Pmr(wi) =
Po(wi)

davg(wi)
(11)

This measures the probability of mis-recognising a single
word, wi. Summing up the probabilities of mis-recognition of all
words, we have M :

M =
nX

i=1

Pmr(wi) =
nX

i=1

Po(wi)

davg(wi)
(12)

Therefore M is the harmonic mean of the distances weighted
by their occurrence probabilities. This inverse of distance clearly
indicates proximity, so the likelihood that none of the words are
recognised is given by the summation of the proximities of words
weighted by their occurrence. Thus, M also quantifies the proba-
bility that none of the words is recognised, and provides an expla-
nation of why

P
i Pr(wi) < 1. This is a fundamental difference

between the probabilities of occurrence and those of recognition:
it is impossible that none of the words occur, while it is possible
that none of them may be recognised. In fact, M characterises
the complete layout of the words in the acoustic space and also
integrates the linguistic and acoustic factors in a simple, intuitive
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ation. As expressed in equation 8, M determines the limits on
much can be recognised.

To find Pr(wi), we notice from equation 8 and 12 that

nX
i=1

Pr(wi) =
nX

i=1

Po(wi) − M (13)

=⇒ Pr(wi) = Po(wi) − Pmr(wi) (14)

Using this, we find the values for Pr by modifying equation 14

Pr(wi) = Po(wi)

„
1 − 1

davg(wi)

«
(15)

ccommodate for values of 0 < davg(wi) < 1, we modify this

Pr(wi) = Po(wi)

„
1 − ε

davg(wi) + ε

«
, ε > 0 (16)

refore,

Pr(wi) = Po(wi)

„
davg(wi)

davg(wi) + ε

«
(17)

role of ε in the above equations is two-fold. Firstly, it ensures
Pr(wi) never exceeds Po(wi), when 0 < davg(wi) < 1
secondly, as a parameter to control the effect of the acoustic
e. It provides a handle to weight the acoustic part with the
uistic part in the joint estimation. These set of probabilities
(w1), Pr(w2), ..., Pr(wn)) can be interpreted as not being the
ability of occurrence but the probability of recognising that
rrence. Therefore using these probability set in the calcula-
of entropy will be a better measurement of the grammar or

language-model. The Equivocality, thus, can be defined using
e set of probabilities as

H̄ = − 1

n
[log2 Pr(w1, w2, ...w3)] (18)

EV = 2H̄
(19)

Since the Pr probabilities are always lower than the P prob-
ities (by a cumulative difference of M ), EV will always be
er than PP . Moreover, this difference between EV and PP

ends on the acoustic goodness of the words in the grammar.
= 0, then EV = PP , thus implying that the information

tent in recognising an occurrence is same as the information
tent in the occurrence since the recognition is a certain event.

The utility of this formulation is 3-fold. First, it unifies lin-
tic and acoustic consideration for characterising a grammar.
ond, it provides a more accurate measure for grammar perfor-
ce. Third, that it can be calculated analytically, without per-
ing experiments for every new grammar.

We now calculate the distances (davg(wi)) and probabilities
ecognition (Pr(wi)) using equations 3, 15 for some example

mars. Then using equation 18, 19, we calculate the EV for
e grammars and observe their correlation with the WER ex-
ment results in the next section.



Table 2: M and Equivocality for grammars

Grammar M Equivocality
g1 0.212 5

g2 0.377 7

g3 0.563 9

Table 3: Perplexity, Equivocality and WER relationships

Grammar Perplexity Equivocality WER

g1 10 5.83 5

g2 10 6.73 7

g3 10 7.83 9

4. EXPERIMENTS AND RESULTS
We use the same grammars of Table 1 to find the distance between
their words and to evaluate the Equivocality of each grammar. The
average distance of these words are calculated using the distance
metric formulated in equation 3. We used the Acoustic Model of
an Indian English speech recognition system to generate the dis-
tance between words. This model was based on a set of 65 phones
and had two silence phones X: intra-phrase-silence and D$: intra-
word-silence. Each phone was modelled by an HMM. The HMMs
are tri-state left-to-right models. The observation and transition
probabilities have been trained on a data of about 500 hours of con-
tinuous speech. In order to improve the acoustic space, the obser-
vations are further divided into context-dependent phones, which
we call as leaves. Thus, the observations are modelled for a total
of 3560 leaves. Further, since the amount of data and its variations
is too large, each leaf is modeled by a set of mixture gaussians.
In all, corresponding to 3650 leaves, there were 105926 mixture
gaussians.

To perform speech recognition experiments, a small test was
conducted using a couple of speakers with all the possible utter-
ances in the three grammars. Since the WER values are illustra-
tive of the grammar recognition difficulty, this number is enough
to provide that effect.

The distance between every pair of words has been calculated
by using the mean, variance and weight of these gaussians. For
a given pair of words, their phone sequence is extracted from the
phone vocabulary. Then insertions and substitutions are used to
generate the two phone strings such that they have the least edit-
distance [7]. Based on the phone-pairs thus obtained, the appropri-
ate gaussians are selected and their mean values are used to gen-
erate the distance davg(wi) for each wi. This exercise is repeated
for all words in the grammar.

The M of the three grammars is calculated using equation 12.
Once the distances davg(wi) are calculated, the values for Pr(wi)
are generated. Then we generated the Equivocality numbers for
each of these grammars. The value of M and Equivocality of
the three grammars in Table 1 are shown in Table 2. The corre-
sponding Table 3 clearly shows that Equivocality is able to distin-
guish between grammars that have the same occurrence probabil-
ity Po(wi) on the basis of their acoustic properties. Thus the in-
creasing WER observed among these grammars corresponds with
the Equivocality numbers for these grammars.

Though the illustrative grammars have been simplified to have
equal probability for all words, the concepts work for any types of
complex grammars. The illustration is intuitive to follow if simple
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mars are used.

. CONCLUSION AND FUTURE WORK
introduced a new measure, Equivocality, that captures the lin-
tic as well as acoustic properties of words in a grammar. While
lexity captures the linguistic model in terms of word occur-
e, this is a poor indicator of the recognisability of a grammar,
e it does not account for acoustics. The concept of acoustic dis-
e between words have been applied to find the acoustic simi-
y between words in a grammar. We use acoustic distance along
linguistic probabilities to get a unified measure. The utility of
formulation is 3-fold. First, it unifies linguistic and acoustic

sideration for characterising a grammar. Second, it provides a
e accurate measure for grammar performance. Third, that it
be calculated analytically, without performing experiments for
y new grammar.
For our experiments, we calculated Equivocality for a set of
e grammars and found that the observed WER corresponds
er with the Equivocality measure than with the standard Per-
ity measure. Since measuring of Equivocality does not require
speech input, this can still be done given a grammar. The def-
ons hold for any Language Model or grammar.
The analysis for calculating the total mis-recognition yielded
to be the harmonic mean of the distances weighted by their
rrence probabilities. M rather neatly captures the interplay
een the linguistic and acoustic factors, and in fact, charac-
es the complete layout of the words in the acoustic space. M
determines the limits on how much can be recognised.
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