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Abstract

Voice based computing applications, such as phone communica-
tion and speech recognition, use microphone arrays to capture
voice from a human speaker. In many environments of interest,
however, sounds from other sources interfere with the speaker’s
voice, posing severe problems for subsequent processing. This
paper describes a new framework for treating this problem, and
presents and demonstrates a new algorithm for the cancellation
of interfering sounds. Our framework combines techniques from
statistical machine learning with ideas from speech and audio
processing. An important feature involves training rich probabilis-
tic models on data from different types of relevant sound sources.
Those source models are then incorporated into a larger proba-
bilistic model of the observed microphone data. Using that model
we derive our algorithm, which is of the expectation-maximization
type and infers from data the clean sound of separate individual
sources. We report very good results on data recorded in different
environments.
Index Terms: source separation, array processing, speech en-
hancement, machine learning, probabilistic models.

1. Introduction
Voice interfaces for computing devices are quickly becoming a hot
topic. One reason is the tremendous popularity of cell phones and
PDAs. A voice interface would allow people to control the phone
by speaking to it, replacing (or complementing) the small, incon-
venient keyboard. This is particularly relevant in Asian markets,
where demand for personal computing and internet access is in-
creasing fast, and many prefer to use cell phones over PCs due
to their lower price. Another reason is the growing trend of us-
ing voice over internet protocol for phone and conference calls. A
third reason is the proliferation of computing devices that allow
people to perform specific tasks, e.g., obtain driving directions or
control a smart home or office (e.g., change TV channels, turn
lights on/off). A voice interface could make using such devices
more efficient.

However, for voice interfaces to cross the chasm into main-
stream use, they must operate reliably in everyday environments
like a car, restaurant, airport lounge, living room, or hotel lobby.
Such environments contain loud ambient sounds that interfere with
the voice of the person speaking. Those sounds significantly re-
duce voice intelligibility in communication systems. They also
confuse speech recognition engines and sharply degrade their ac-
curacy.

Several approaches to this problem have been developed. On
the hardware side, they include sound capturing devices such as
directional microphones and microphone arrays. On the soft-
ware (algorithmic) side, they include array based noise suppres-
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techniques, such as beamforming and blind source separation
, e.g., [1]-[7]).
This paper presents a new solution to this problem. It is a
ware solution, which requires only low-cost, off-the-shelf mi-
hones, although its performance can be improved with high

lity microphones. Our solution is based on a new approach
ource separation, which considerably extends previous work
he subject (see, e.g., [3]-[7]). This approach combines speech
audio processing ideas with techniques from statistical ma-
e learning, particularly probabilistic graphical models [8]. An
ortant feature of our approach is the use of rich probabilistic
els of different types of sounds, that may be present in rel-
t environments. Those models are trained offline on appro-

te data samples. Following training, they are incorporated as
nd source models into a larger probabilistic graphical model
he observed microphone data. That model describes the data
rising from unobserved sound sources, that have been com-
d by an unknown convolutive mixing transformation. Apply-
probabilistic inference techniques, we derive from the model
xpectation-maximization (EM) algorithm which infers from
the signals of the unobserved sources. Voice interfaces can ap-

this algorithm to extract a clean version of the human speaker’s
e from the microphone data, and feed it into a voice commu-
tion, speech recognition, or another voice based applications.
This paper is organized as follows. Section 2 provides a math-
tical definition of the source separation task. Section 3 de-
s the probabilistic model used to described sound sources, and
ents an algorithm that infers the model parameters from data.
tion 4 describes the probabilistic model of the observed micro-
ne data, which includes the sound source models as building
ks. It also outlines the derivation of our EM algorithm for

rce separation. Section 5 describes experiments. Section 6 dis-
es extensions of this work.

2. Problem Formulation

s paper focuses on the scenario where the number of sources of
rest equals the number of sensors, and the background noise is
ishingly small. This condition is known by the technical term
are, zero-noise convolutive mixing’. Whereas our algorithm
produce satisfactory results under other conditions, its perfor-
ce would in general be suboptimal.
Let L denote the number of sensors, and let yin denote the
al waveform captured by sensor i at time n = 0, 1, 2, ...,
re i = 1 : L. Let xin denote the signal emitted by source
time n. Then yin =

∑
jm Hijmxjn−m. The filters Hijm

el the convolutive mixing transformation. To achieve source
ration, the algorithm must infer the individual source sig-
xin, which are unobserved, from the sensor signals. For
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this purpose we seek an unmixing transformation Gijm such that
xin =

∑
jm Gijmyjn−m.

Rather than working with signal waveforms in the time do-
main, it turns out to be more computationally efficient, as well
as mathematically convenient, to work with signal frames in
the frequency domain. Frames are obtained by applying win-
dowed DFT to the waveform. Let Xim[k] denote the frames
of source i. They are computed by multiplying the waveform
xin by an N -point window wn at J-point shifts, Xim[k] =∑N−1

n=0 e−iωknwnxi,Jm+n, where m = 0 : M − 1 is the frame
index and k = 0 : N − 1 is the frequency index. The number
of frames M is determined by the waveform’s length and the win-
dow shift. The sensor frames Yim[k] are computed from yin in the
same manner.

In the frequency domain, the task is to infer from sensor data
an unmixing transformation Gij [k] for each frequency k, such that
Xim[k] =

∑
j Gij [k]Yjm[k]. In vector notation we have

Xm[k] = G[k]Ym[k] , (1)

where Xm[k], Ym[k] are complex L × 1 vectors and G[k] is a
complex L×L matrix. Once the algorithm infers the source frames
from the sensor frames via (1), their time domain waveforms xn

are synthesized by an overlap-and-add procedure.
Notation. We often use a collective notation obtained by drop-

ping the frequency index k from the frames. Xim denotes the set
of Xim[k] values at all frequencies, and Xm denotes the set of
L×1 vectors Xm[k] at all frequencies. Also, we define a Gaussian
distribution with parameters μ, ν over a complex variable Z by
N (Z | μ, ν) = ν

π
e−ν|Z−μ|2 . Two moments are EZ = μ and

E | Z |2= 1/ν, hence μ is termed the mean of Z and ν is termed
the precision. This is a joint distribution over the real and imag-
inary parts of Z. A Gaussian over a real variable z is defined as
usual by N (z | μ, ν) =

√
ν
2π

e−0.5ν(z−μ)2 .

3. Source Models
Our algorithm employs parametric probabilistic models for dif-
ferent types of source signals. This section describes the source
model, and presents an algorithm for inferring the model parame-
ters from clean sound samples of a given source.

3.1. Source model definition

We describe a source signal by a probabilistic mixture model over
its frames. The model for source i has Si components,

p(Xim) =

Si∑

s=1

p(Xim | Sim = s)p(Sim = s) . (2)

Here we assume that the frames are mutually independent, hence

p(Xi,m=0:M−1) =
∏

m

p(Xim) . (3)

It is straightforward to relax this assumption and use, e.g., a hidden
Markov model.

We model each component by a zero-mean Gaussian factor-
ized over frequencies, where component s has precision νis[k] at

freq
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uency k, and prior probability πis,

p(Xim | Sim = s) =

N/2∏

k=0

N (Xim[k] | 0, νis[k])

p(Sim = s) = πis . (4)

sufficient to consider k = 0 : N/2 since Xim[N − k] =
[k]�. Notice that the precisions νis[k] form the inverse spec-
of component s, since the spectrum is the second moment

Xim[k] |2| Sim = s) = 1/νis[k], and the first moment van-
s. The inverse-spectra and prior probabilities, collectively de-
d by θi = {νis[k], πis | s = 1 : Si, k = 0 : N/2}, constitute
parameters of source i.

An algorithm for learning source model parameters

s section describes a maximum likelihood (ML) algorithm for
rring the model parameters θi for source i from sample data
. Generally, ML infers parameter values by maximizing the

erved data likelihood Li =
∑

m log p(Xim) w.r.t. the parame-
. In our case, however, we have a hidden variable model, since
source states Sim are not directly observable. As is standard
edure, we use an expectation-maximization (EM) algorithm,

ch is an iterative technique for ML in hidden variable mod-
An appealing way to derive it, following the article by Neal &
ton in [8], starts by considering the objective function

π̄i, θi) =

M−1∑

m=0

Si∑

s=1

π̄ism [log p(Xim, Sim=s) − log π̄ism] (5)

ch depends on the parameters θi, as well as on π̄i which
otes collectively the posterior distributions over the states of
rce i. Each posterior π̄ism is the probability that source i is in
e Sim = s at time m, conditioned on the frame Xim.
Each EM iteration maximizes Fi alternately w.r.t. to the para-
ers and the posteriors. The E-step maximizes Fi w.r.t. to the
e posteriors by the update rule

π̄ism = p(Sim = s | Xim)

=
p(Xim, Sim = s)∑

s′=1:Si
p(Xim, Sim = s′)

, (6)

ping constant the current values of the parameters (note that the
. depends on θi). The M-step maximizes Fi w.r.t. the model
meters by the update rule

νis[k]−1 =

∑M−1
m=0 π̄ism | Xim[k] |2
∑M−1

m=0 π̄ism

πis =
1

M

M−1∑

m=0

π̄ism ,

ping constant the current values of the posteriors. To prove the
vergence of this procedure, we use the fact that Fi is upper
nded by the likelihood,

Fi(π̄i, θi) ≤ Li(θi) =

M−1∑

m=0

log p(Xim) , (7)

re equality is obtained when π̄i is set according to (6), with
posterior being computed using θi. We use Fi as a conver-
ce criterion, and stop the EM iteration when the change in Fi



is below than a pre-determined threshold. One may also define a
convergence criterion using the change in the model parameters in
addition to, or instead of, the change in Fi.

Since in typical scenarios one uses a DFT length N between
a few 100’s and a few 1000’s, depending on the sampling rate
and the mixing complexity, a direct application of the algorithm
above would be attempting to perform maximization in a para-
meter space θi of a very high dimension. Hence, a good ini-
tialization procedure is critical. We use the following procedure.
(1) Compute the cepstra, defined as the DFT of the log-spectra
log | Xim[k] |2, and keep only the low N ′ � N cepstral coef-
ficients. (2) Perform vector quantization on the low cepstra, and
obtain the cluster means ξis[n]. (3) Initialize the state spectra

to νis[k] = exp[− 1
N

(ξis[0] + 2
∑N′−1

n=0 cos(ωnk)ξis[n])]. Fol-
lowing initialization, we iterate the EM algorithm to convergence.
This procedure produced very good performance. We also tested
two algorithms that maximize Fi directly w.r.t. the low cepstrals
ξis[n], but we omit them here.

4. Separation Algorithm
This section presents an EM algorithm for inferring the unmixing
transformation G[k] from sensor frames Ym[k]. It assumes that
the model parameters θi for all sources i = 1 : L are given.

4.1. Sensor model

Since the source frames and the sensor frames are related by (1),
we have

p(Ym) =

N/2∏

k=0

| G[k] |2 p(Xm) , (8)

except for k = 0, N/2 where, since Xm[k], Ym[k] are real, we
must use | G[k] | instead of its square. As above, the sources are
mutually independent, p(Xm) =

∏L
i=1 p(Xim), where p(Xim)

is given by (4). The sensor likelihood is therefore given by

L(G) =

M−1∑

m=0

log p(Ym) (9)

= M

N/2∑

k=0

log | G[k] |2 +

M−1∑

m=0

L∑

i=1

log p(Xim) ,

where Xm[k] = G[k]Ym[k]. Inferring the unmixing transforma-
tion is done by maximizing this likelihood w.r.t. G.

4.2. An algorithm for learning the unmixing transformation

Like the source signals, the sensor signals are also described by a
hidden variable model, since the states Sim are unobserved. Here
we derive an EM algorithm for ML estimation of G. Consider the
objective function

F(π̄1:L, G) = M

N/2∑

k=0

log | G[k] |2 +

L∑

i=1

Fi(π̄i, θi, G) (10)

where Fi is given by (5); we have added G as an argument since
Fi depends on it via Xi (1). Each EM iteration maximizes F
alternately w.r.t. the unmixing G and the posteriors π̄i, where πism

is the probability that source i is in state Sim = at time m, as
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re, except now this probability is conditioned on the sensor
e Ym. The parameters θ1:L are held fixed.
The E-step maximizes F w.r.t. the state posteriors π̄ism, keep-
constant the current values of G. It uses an update rule that
ormally identical to (6), except now the Xim are given by
[k] = G[k]Ym[k]. The M-step maximizes F w.r.t. the un-
ing transformation G.
Before presenting the update rule, we rewrite F as follows.
Ci[k] denote the ith weighted correlation of the sensor frames
equency k. It is a Hermitian L × L matrix defined by

Ci
jj′ [k] =

1

M

M−1∑

m=0

ν̄im[k]Yjm[k]Y �
j′m[k] (11)

re the weight for Ci is given by the precisions of source i’s
es, averaged w.r.t. their posterior, ν̄im[k] =

∑Si
s=1 π̄ismνis[k].

of (10) is now given by F = M log | G[k] |2∑L
i=1(G[k]Ci[k]G[k]†)ii + f where f is independent of G.

Computing G can generally be done efficiently by an iter-
e method, based on the concept of the relative (a.k.a. nat-
) gradient. Consider the ordinary gradient ∂F/∂Gij [k] =
[k]† −1 − G[k]Ci[k])ij . To maximize F , we increment G[k]
n amount proportional to (∂F/∂G[k])G[k]†G[k]. We obtain

ij [k] → Gij [k] + ε(G[k] − G[k]Ci[k]G[k]†G[k])ij (12)

re ε is the adaptation rate. For each M-step, the update rule
is iterated to convergence. Alternatively, one may stop short

onvergence and move on to the E-step of the next iteration, as
would still result in increasing F .

1. The case of two sensors

special case of L = 2 sensors is by far the most common one
ractical applications. Incidentally, in this case there exists an
tep solution for G which is even more efficient than the itera-
procedure of (12). This is because the M-step maximization of

or L = 2 can be performed analytically. This section describes
solution.
At a maximum of F its gradient vanishes, hence the matrix
] satisfies

(G[k]Ci[k]G[k]†)ij = δij . (13)

us write G[k] as a product of a diagonal matrix U [k] and a
rix V [k] with ones on its diagonal,

k] = U [k]V [k] (14)

k] = (
u1[k] 0
0 u2[k]

) , V [k] = (
1 v1[k]
v2[k] 1

) .

h these definitions, the zero-gradient condition leads to the fol-
ing equations, for all i, j,

(V [k]Ci[k]V [k]†)i�=j = 0

| ui[k] |2 (V [k]Ci[k]V [k]†)ii = 1 . (15)

We now turn to the case L = 2, where all matrices are 2 × 2.
first line in (15) then implies that v1 depends linearly on v2

v2 satisfies the quadratic equation av2
2 + bv2 + c = 0. Hence

v1 =
(av2 + d)�

c
, v2 =

−b ±√
b2 − 4ac

2a
, (16)
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Figure 1: Results on 5sec overlapping sound data captured by 2
microphones in an office environment. Sources include a male
English speaker and a radio playing music. From left: 1st col-
umn: microphone waveforms. 2nd column: waveforms of output
sounds, with the speaker’s voice on top (notice the choppiness of
the waveform characteristic of speech). 3rd column; microphone
spectrograms (up to 3kHz). 4th column: spectrograms of output
sounds, with the voice on top (harmonics are visible).

where the k-dependence is omitted. The second line in (15) iden-
tifies the ui within a phase, reflecting the identifiability properties
of G. Constraining them to be real nonnegative, we obtain

u1 = (α1 + 2Reβ�
1v1 + γ1 | v1 |2)−1/2

u2 = (γ2 + 2Reβ2v2 + α2 | v2 |2)−1/2 . (17)

The quantities αi[k], βi[k], γi[k] denote the elements of the
weighted correlation matrices (11) for each frequency k,

Ci[k] = (
αi[k] βi[k]
β�

i [k] γi[k]
) , i = 1, 2 (18)

where αi[k], γi[k] are real nonnegative and βi[k] is complex. The
coefficients a[k], b[k], c[k], d[k] are given by

a = α1β2 − α2β1 , b = α1γ2 − α2γ1 + d

c = β�
1γ2 − β�

2γ1 , d = 2iImβ�
1β2 . (19)

Hence, the result of the M-step for the case L = 2 is the unmixing
transformation G of (14), obtained using Eqs. (11,16–19).

5. Experiments
We have tested the algorithm in 4 different environments using
two scenarios, (1) two human speakers, (2) a human speaker and
a rock music source. The human speakers included 2 males and
2 females. We used CD players, connected to speakers, as sound
sources. The sources were placed 20 − 200cm away from the
microphone, at a relative angle of 90 − 180deg. Background
noise of various types (fan, hard disk, movement) was present at
a low level. An inexpensive stereo microphone was used to cap-
ture sounds, with the microphones approximately 2in apart. In
each scenario, we recorded 5 different 10sec long data segments
with both sources simultaneously active. The sound level was
tuned such that both sources had approximately the same energy
(SIR≈ 0). To facilitate SIR computation, we repeated each record-
ing with only one source active at a given time.

Separately, we collected additional data from the same sound
sources for model training. We captured a 30sec, 1-microphone
sound data from each human speaker and a 120sec segment of
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music. Those data were used to train 2 source models using
algorithm of Section 3: a model for a human speaker (gender
pendent), and another model for music.
Next, we applied the algorithm of Section 4 to the stereo
rdings. We used 8kHz sampling rate, N = 2048 DFT length,
a Hanning window with a 1024-point overlap. For scenario 1
used the human speaker model for both sources, and for sce-
o 2 we used that model for one source, and the music model for
ther. Convergence was defined by a relative change < 10−2 in
ig. 1 shows a typical example. We compared the performance

ur algorithm to 2 published algorithms, termed Benchmark 1
nd Benchmark 2 [6]. SIR results (averaged over recordings)

shown in Table 1. Our algorithm outperformed both bench-
ks. Performance on the first scenario was better, probably
to the fact that the energy in speech signals is less distributed
ng frequencies than in music.

Table 1: Performance of the separation algorithm (dB)

New algorithm Benchmark 1 Benchmark 2

enario 1 21.2 16.7 14.5
enario 2 18.4 15.9 13.1

We have repeated these experiments, replacing one CD player
enario 1 by actual human speakers. Whereas it was difficult
mpute the SIR accurately, the separation results were audibly
lar to those in the experiments above.

6. Extensions
are currently extending this algorithm in several directions.
extension performs sequential processing could adapt on-
to changes in the acoustic environment, e.g., source move-
ts. Another extension identifies automatically, from data,
ch source models should be used in a given environment, and
eves them from a directory of stored models. We have also
loped an extension that handles cases with different numbers

ources and sensors and a significant background/sensor noise
l.
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