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Abstract

While the accuracy of feature measurements heavily depends on
changing environmental conditions, studying the consequences of
this fact in pattern recognition tasks has received relatively little at-
tention to date. In this work we explicitly take into account feature
measurement uncertainty and we show how classification rules
should be adjusted to compensate for its effects. Our approach is
particularly fruitful in multimodal fusion scenarios, such as audio-
visual speech recognition, where multiple streams of complemen-
tary time-evolving features are integrated. For such applications,
provided that the measurement noise uncertainty for each feature
stream can be estimated, the proposed framework leads to highly
adaptive multimodal fusion rules which are widely applicable and
easy to implement. We further show that previous multimodal
fusion methods relying on stream weights fall under our scheme
under certain assumptions; this provides novel insights into their
applicability for various tasks and suggests new practical ways for
estimating the stream weights adaptively. The potential of our ap-
proach is demonstrated in audio-visual speech recognition using
either synchronous or asynchronous models.
Index Terms: multimodal fusion, audiovisual speech recogni-
tion, uncertainty compensation, Active Appearance Models, prod-
uct HMMs, stream weights

1. Introduction
Motivated by the multimodal way humans perceive their environ-
ment, complementary information sources have been successfully
utilized in many pattern recognition tasks. Such a case is audio-
visual speech recognition (AV-ASR) [1], where fusing visual and
audio cues can lead to improved performance relatively to audio-
only recognition, especially in the presense of audio noise.

However, successfully integrating heterogeneous information
streams is challenging. Different streams provide complementary
information and multimodal schemes should properly elevate the
discriminative abilities of each of the modalities. Such schemes
should adapt to the effective environmental conditions, which can
dissimilarly affect the reliability of the separate modalities by con-
taminating feature measurements with noise. For example, the
visual stream in AV-ASR should be discounted when the visual
front-end loses track of the speaker’s face.

A common theme in many stream integration methods is the
utilization of stream weights to equalize the different modalities.
These operate as exponents to each stream’s probability density
and have been employed in fusion tasks of different audio streams

Our work is supported by the European research program ‘HIWIRE’,
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and audio-visual integration [3]. Although stream weighting
indisputable benefits as shown experimentally, it requires de-
ining the weigths for the different streams; although various

hods have been proposed for this purpose [4], a rigorous ap-
ch to dynamically adapt the stream weights is still missing.
We choose to explicitly take observation uncertainty of the
rent modalities into account. Modeling observation noise
been proven fruitful for single modality ASR [5, 6], and has

further pursued for applications such as speaker verifica-
[7], multi-band ASR [2], and recently in enhancement tech-
es based on clean speech and noise modeling [8]. In our
k, given an estimate of the feature measurement uncertainty,
show in a rigorous probabilistic framework how the models
for classification should be adjusted to compensate for this ef-

. The proposed scheme leads to highly adaptive multimodal fu-
rules which are widely applicable and easy to implement. We
onstrate that previous stream weight-based multimodal fusion
ulations are derived from our scheme under certain assump-

s; this unveils their probabilistic underpinnings and provides
el insights into their applicability for various tasks. In this con-
, we further suggest new practical ways for estimating stream
ghts adaptively. Evaluating our method in AV-ASR experi-
ts utilizing multistream HMMs improves their performance.
have also applied the proposed technique in conjuction with
uct HMMs (P-HMM) [9, 10], which account for cross-modal
chrony, obtaining promising results.

2. Feature Uncertainty, Adaptive
Compensation, and Multimodal Fusion

us consider a pattern classification scenario. We measure a
erty (feature) of a pattern instance and try to decide to which
classes ci, i = 1 . . . N it should be assigned. The measure-

t is a realization x of a random variable X , whose statistics
r for the N classes. Normally, for each class we have trained
odel that captures these statistics and represents the class-
ditional probability distributions pX(x|ci). Our decision is
based on a proper rule, e.g. the Maximum A Posteriori (MAP)
rion: ĉ = argmax P (ci|x) = argmax pX(x|ci) · P (ci).
One may identify three major sources of uncertainty that could
lex classification. First, inherent model ambiguity due to im-
er modeling or limited discriminability of the feature set for

classification task. For instance, visual cues cannot discrim-
e between members of the same viseme class (e.g. /p/, /b/)

Second, parameter estimation uncertainty that mainly orig-
es from insufficient training. Use of the Bayesian Predictive
sification rule can possibly alleviate it [11]. Third, observa-
uncertainty due to errors in the measurement process or noise

tamination. This is the type of uncertainty we mainly address
is paper.
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2.1. Adaptive Compensation

We may represent observation uncertainty as a random variable E
independent of any class ci. For simplicity, it is regarded to be an
additive Gaussian variable with probability distribution pE(e) =
N(e; μe, Σe). In this case, the measurement y, a realization of the
random variable Y , is a noisy version of the clean feature X:

Y = X + E (1)
So, it would be desirable to use the distributions pY (·|ci) in order
to account for observation uncertainty. However, we only have
pX(·|ci) available.

To determine these distributions we assume that X and E are
independent. Then the probability pY (y|ci) of the uncertain ob-
servation y given the class ci may be expressed as convolution of
pX(x|ci) and pE(e): pY (y|ci) =

R
∞

−∞
pX(x|ci)pE(y−x) dx. If

pX(x|ci) = N(x; μi, Σi), then pY (y|ci) is also normal, namely

pY (y|ci) = N(y; μi + μe, Σi + Σe), (2)

indicating that it is simple to compensate for the observation un-
certainty; the variances Σi of the trained models, namely the class-
conditional probability distributions of the clean training data,
should be adjusted by adding the variance Σe of the measurement
noise. The means should be appropriately shifted as well. A simi-
lar approach has been previously followed in [6, 7, 8].

To further illustrate this point, we discuss how observation
uncertainty influences decision in a simple 2-class classification
task. The two classes are modeled by 2D spherical Gaussian dis-
tributions, N(μ1, σ

2

1I), N(μ1, σ
2

2I) and they have equal prior
probability. If our observation y contains zero mean spherical
Gaussian noise with covariance matrix σ2

eI then the modified
decision boundary is described by log N(y; μ1, σ

2

1I + σ2

eI) −
log N(y; μ2, σ

2

2I + σ2

eI) = 0. In the case when σ2

e is zero, the
decision should be made as in the clean case. If σ2

e is comparable
to the variances of the models then the modified boundary signifi-
cantly differs from the original one. So, neglecting uncertainty in
the decision may easily lead to misclassifications. As uncertainty
increases, decision becomes even more difficult since the observa-
tion is even less informative. For infinite uncertainty we have just
to pick the class whose mean is closer to the observation, which is
also intuitively expected, as demonstrated in Fig. 1.

2.2. Multimodal Fusion

For many applications one can get improved performance by ex-
ploiting complementary features, stemming from a single or mul-
tiple modalities. Let us assume that one wants to integrate S infor-
mation streams which produce feature vectors xs, s = 1, . . . , S.
If the features are statistically independent given the class la-
bel c, the conditional probability of the full observation vector
x1:S ≡ (x1; . . . ; xS) is given by the product rule; application of
Bayes’ formula yields the class label probability given the features:

p(c|x1:S) ∝ p(c)
SY

s=1

p(xs|c). (3)

This probability can then be used in classification, e.g. by the MAP
rule ĉ = argmaxc∈C p(c|x1:S).

In an attempt to improve classification performance, several
authors have introduced stream weights ws as exponents in (3),
resulting to the modified score

b(c|x1:S) = p(c)
SY

s=1

p(xs|c)
ws , (4)
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re 1: Decision boundaries for classification of a noisy obser-
on (square marker) in two classes, shown as circles, for vari-
observation noise variances. Classes are modeled by spherical
ssians of means μ1, μ2 and variances σ2

1I , σ2

2I respectively.
decision boundary is plotted for three values of noise variance
e = 0, (b) σe = ∞, and (c) σe = σ1.

ch can also be seen in a logarithmic scale as a weighted av-
e of individual stream log-probabilities. Such schemes have

motivated by potential differences in reliability among dif-
nt information streams, and larger weights are assigned to in-
ation streams with better classification performance. Using
weighting mechanisms has experimentally been proven ben-

ial for feature integration in both intra-modal (e.g. multiband
io [2]) and inter-modal (e.g. audio-visual speech recognition
, 12]) scenarios.
However we find the stream weights formulation unsatisfac-
in many respects. From a theoretical viewpoint, the weighted
e b in (4) ceases having the probabilistic interpretation of (3) as
s probability given the full observation vector x1:S . Therefore
ecomes unclear how to conceptually define, let alone imple-
t, standard probabilistic operations, such as integrating-out a
able xs (in the case of missing features), or conditioning the
e on some other available information. From a more practical
dpoint, it is not straightforward how to optimally select stream
ghts. Most authors set them discriminatively for a given set
nvironment conditions (e.g. audio noise level in the case of
io-visual speech recognition) by minimizing the classification
r on a held-out set, and then keep them constant throughout
recognition phase. However, this is insufficient, since attain-
optimal performance requires that we dynamically adjust the
e of each stream in the decision process, e.g. to account for
al tracking failures in the AV-ASR case. Although there have
some efforts towards dynamically adjustable stream weights

they are not rigorously justified and are difficult to generalize.
We will now show that our approach for model adjustment
he presence of feature uncertainty naturally leads to a novel
tive mechanism for fusion of different information sources.
e in our stochastic measurement framework we do not have
ct access to the features xs, our decision mechanism depends
the noisy version ys = xs + es of the underlying quan-

The probability of interest is thus obtained simply by ap-
ng the convolution rule of Sec. 2.1 to each the independent
am separately. In the common case that the clean feature emis-
probability is modeled as a mixture of gaussians (MOG), i.e.

s|c) =
PMs,c

m=1
ρs,c,mN(xs; μs,c,m, Σs,c,m), and the observa-



tion noise at each stream is considered gaussian, i.e. p(ys|xs) =
N(ys; xs + μe,s, Σe,s), it directly follows that

p(c|y1:S) ∝ p(c)

SY
s=1

Ms,cX
m=1

ρs,c,mN(ys; μs,c,m+μe,s, Σs,c,m+Σe,s)

(5)
which simply means that we can proceed by considering our fea-
tures ys clean, provided that we shift the model means by μe,s

and increase the model covariances Σs,c,m by Σe,s. Note that,
although the measurement noise covariance factor Σe,s of each
stream is the same for all classes c and all mixture components m,
noise particularly affects the most peaked mixtures, for which the
measurement noise uncertainty represented by Σe,s is substantial
relative to the modeling uncertainty due to Σs,c,m.

Although Eq. (5) is conceptually simple and easy to imple-
ment, given a good estimate of the measurement noise variance
Σe,s of each stream, it actually constitutes a highly adaptive rule
for multisensor fusion. To appreciate this, and also to show how
our scheme is related to the stream weights formulation of Eq. (4),
we examine a particularly illuminating special case of our result.
We make two simplifying assumptions:

1. The measurement noise covariance is a scaled version of the
model covariance, i.e. Σe,s = rs,c,mΣs,c,m for some posi-
tive constant rs,c,m interpreted as the relative measurement
error.

2. For every stream observation ys the gaussian mixture re-
sponse of that stream is dominated by a single component
m0 or, equivalently, there is little overlap among different
gaussian mixtures.

Under these conditions the Gaussian densities in Eq. (5) can be ap-
proximated by N(ys; μs,c,m0

+μe,s, (1+rs,c,m0
)Σs,c,m0

); using
the power-of-gaussian identity N(x; μ, Σ)w ∝ N(x; μ, w−1Σ)
yields

p(c|y1:S) ∝ p(c)
SY

s=1

»
ρ̃s,c,m0

N(ys; μs,c,m0
+μe,s, Σs,c,m0

)

–ws,c,m0

(6)
where

ws,c,m0
= 1/(1 + rs,c,m0

) (7)

is the effective stream weight and ρ̃s,c,m0
is a properly modified

mixture weight which is independent of the observation ys. Note
that these effective stream weights are between 0 (for rs,c,m0

�
1) and 1 (for rs,c,m0

≈ 0) and discount the contribution of each
stream to the final result by properly taking its relative measure-
ment error into account; however they do not need to satisfy a
sum-to-one constraint

PS

s=1
ws,c,m0

= 1, as is conventionally
considered by other authors.

This is an appealing result. Our framework unveils the proba-
bilistic assumptions under stream weight-based formulations; fur-
thermore, Eq. (7) provides a rigorous mechanism to select for each
new measurement ys and uncertainty estimate (μe,s, Σe,s) all in-
volved stream weights fully adaptively, i.e. with respect to both
class label c and mixture component m.

3. Audio-Visual Speech Recognition
To demonstrate the applicability of the proposed fusion scheme we
sucessfully apply it in Audio-Visual Automatic Speech Recogni-
tion (AV-ASR), a practical problem for which proper information
fusion is very important.
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re 2: Left: Mean shape s0 and the first eigenshape s1. Right:
n texture A0 and the first eigentexture A1.

Visual Front-end

ent visual speech information can be obtained from the shape
the texture (intensity/color) of the speaker’s visible articula-

, mainly the lips and the jaw, which constitute the Region Of
rest (ROI) around the mouth [1].
We use Active Appearance Models (AAM) [13] of faces to ac-
tely track the speaker’s face and extract visual speech features
it, capturing both the shape and the texture of the face. AAM,

ch were first used for AV-ASR in [14], are generative models
bject appearance and have been proven particularly effective
odeling human faces for diverse applications, such as face
gnition or tracking. In the AAM scheme an object’s shape is
eled as a wireframe mask defined by a set of landmark points
, i = 1 . . . N}, whose coordinates constitute a shape vector s
ength 2N . We allow for deviations from the mean shape s0

etting s lie in a linear n-dimensional subspace, yielding s =Pn

i=1
pisi. The deformation of the shape s to the mean shape

efines a mapping W (x; p), which brings the face exemplar on
current frame I into registration with the mean face template.
r factoring out shape deformation, the face color texture reg-
ed with the mean face can be modeled as a weighted sum of
enfaces” {Ai} as: I(W (x; p)) ≈ A0(x) +

Pm

i=1
λiAi(x),

re A0 is the mean texture of faces. Both the eigenshapes and
r eigentextures are learned during a training phase.The first few
em extracted by such a procedure are depicted in Fig. 2.
Given a trained AAM, model fitting amounts to finding for

video frame It the parameters p̃t ≡ {pt, λt} which mini-
e the squared texture reconstruction error It(W (pt)) − A0 −

1
λt,iAi; efficient iterative algorithms for this non-linear least

res problem can be found in [13]. The fitting procedure em-
s a face detector to get an initial shape estimate for the first
e. To extract information mostly related to visual speech, we

ze a hierarchy of two AAM. The first ROI-AAM spans only the
around the mouth and is used to analyze in detail the ROI’s
e and texture; however, the ROI-AAM covers too small an
to allow for reliable tracking. To pinpoint the ROI-AAM we

a second Face-AAM which spans the whole face and can re-
ly track the speaker in long video sequences. As visual fea-
vector for speech recognition we use the parameters p̃t of

ROI-AAM. We currently employ as uncertainty in the visual
ures the uncertainty in estimating the parameters of the corre-
ding non-linear least squares problem [15]; a better estimate
be obtained by using an extended Kalman filter-based visual
ker [16]. However, since AAM fitting is a non-linear optimiza-
task, these methods tend to under-estimate the tracking error

ase the AAM instantaneously mistracks the face and therefore
y-tailed distributions might model the tracking error more re-

ly; we defer further study of this issue for future work.

Audio Front-end

ur expreriments, we use Mel Frequency Cepstral Coefficients
CC) and their time derivatives to represent the audio stream.



SNR A V AV P-AV AV-UC P-AV-UC

clean 100.0 68.7 95.1 95.4 97.0 99.6
10 dB 92.8 - 88.3 90.6 90.2 92.5
5 dB 73.9 - 84.5 87.2 86.8 89.1
0 dB 54.7 - 79.6 83.8 81.1 82.6

Table 1: Word Percent Accuracy (%) of classification experiments
on CUAVE database for babble noise; Audio (A), Visual (V),
baseline Audio-Visual (AV), Product HMM (P-AV), the proposed
Audio-Visual Fusion with Uncertainty Compensation using multi-
stream HMMs (AV-UC) and Product HMMs (P-AV-UC) .

Uncertainty is caused by the artificial addition of noise to the
speech waveforms. An enhancement process provides us estimates
of the clean features, namely those that would have been extracted
from the clean waveforms. These are the features we base our
classification decision on. In our framework, we consider the er-
ror of the enhancement process to be Gaussian. We have shown
in Sec. 2 that if we can have an estimate of this error/uncertainty
along with the clean feature estimate and use both in classification
then audiovisual fusion could benefit. There are various enhance-
ment techniques that can be applied for this purpose [7, 8, 2]. In
our preliminary experiments, we regard uncertainty in our feature
estimates to be zero-mean. To estimate its variance for each fea-
ture, we utilize the squared difference between the clean feature
estimate and the clean feature which is also available in our case.

3.3. Audio-Visual Speech Recognition Experiments

The fusion approach proposed above is evaluated on the CUAVE
audiovisual database [17] in the digit classification task. By con-
taminating the clean audio signal with babble noise from the NOI-
SEX dataset [18] we extended the database including its noisy ver-
sion. The audio feature vector included 13 static MFCC and their
derivatives. Cepstral Mean Normalization has been applied to the
static features. As far as the visual front-end is concerned, we form
a visual feature vector by concatenating 6 shape and 12 texture
features. For the acoustic and visual modeling of the observations
we constructed 8-state left-right word HMM with a single mut-
lidimensional Gaussian as observation probability distribution per
stream at each state. The models were trained on clean data. Fea-
ture uncertainty was taken into account during the testing phase as
described by Eq. (5).

Classification results are shown in Table 1 for 0, 5 and 10dB
SNR. Compensation for uncertainty (AV-UC, Audio-Visual Un-
certainty Compensation) shows superior performance in noise
compared to the audiovisual classification result (AV) obtained
using the typical multistream HMMs. For variance compensa-
tion in the clean case, we only account for the visual observa-
tion error. Better estimates of the uncertainty in the visual fea-
tures could in general lead to improved results. Further, to ac-
count for audio-visual speech asynchronicity we present experi-
ments that utilize our scheme in conjuction with Product HMMs
(P-AV and P-AV-UC). The conducted experiments show superior
improvement compared to the synchronized case.

4. Perspective
The paper has shown that taking the feature uncertainty into ac-
count constitutes a fruitful framework for multimodal feature anal-
ysis tasks. This is especially true in the case of multiple com-
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entary information streams, where having a good estimate of
stream’s uncertainty at a particular moment allows for fully

tive stream integration schemes, greatly facilitating informa-
fusion. In order this approach to reach its full potential, re-

le methods for dynamically estimating the feature observation
ertainty are needed. Ideally, the methods that we employ to ex-
t features in pattern recognition tasks should accompany fea-
estimates with their respective errorbars. Although various
ors have done progress in the area, much remains to be done
re we fully understand the quantitative behavior under diverse
ronmental conditions of popular features commonly used in
ch recognition.
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