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Abstract

Recently, a trajectory model, derived from the hidden
Markov model (HMM) by imposing explicit relationships
between static and dynamic features, has been proposed.
The derived model, named trajectory HMM, can alleviate
two limitations of the HMM: constant statistics within a
state and conditional independence assumption of state out-
put probabilities. In the present paper, a speaker adapta-
tion algorithm for the trajectory HMM based on feature-
space Maximum Likelihood Linear Regression (fMLLR)
is derived and evaluated. Results of a simple continu-
ous speech recognition experiment shows that adapting tra-
jectory HMMs using the derived adaptation algorithm im-
proves the speech recognition performance.
Index Terms: trajectory HMM, adaptation, fMLLR.

1. Introduction

Speech recognition technologies have achieved significant
progress with the introduction of hidden Markov models
(HMMs). Their tractability and efficient implementations
are achieved by a number of assumptions, such as constant
statistics within an HMM state, conditional independence
of state output probabilities. Although these assumptions
make the HMM practically useful, they are not realistic for
modeling sequences of speech spectra, especially in spon-
taneous speech. To overcome these shortcomings of the
HMM, a variety of alternative models have been proposed,
e.g., [1–3]. Although these models can improve the speech
recognition performance, they generally require an increase
in the number of model parameters and computational com-
plexity. Alternatively, the use of dynamic features (delta
and delta-delta features) [4] also improves the performance
of HMM-based speech recognizers. It can be viewed as a
simple mechanism to capture time dependencies. However,
it has been thought of as an ad hoc rather than an essential
solution. Generally, dynamic features are calculated as re-
gression coefficients from their neighboring static features.
Therefore, relationships between static and dynamic feature
vector sequences are deterministic. However, usually these
relationships are ignored and the static and dynamic fea-
tures are modeled as independent random variables. Ignor-
ing these dependencies allows inconsistency between the
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ic and dynamic features when the HMM is used as a
erative model in the obvious way.
Recently, a trajectory model, derived from the HMM by
osing the explicit relationships between static and dy-
ic features, has been proposed [5]. The derived model,
ed trajectory HMM, can overcome the above two lim-
ons of the HMM without any additional parameters.
imum likelihood (ML) training algorithms for the tra-

ory HMM based on the Viterbi and Monte Carlo approx-
tions have also been derived [5, 6]. It was applied to
ker-dependent acoustic modeling not only in the speech
gnition but also in the speech synthesis [5].
Currently, most of state-of-the-art speech recognition
ems adopt speaker adaptation techniques. These tech-
es aim to adapt speaker-independent acoustic models

pecific speakers to improve the speech recognition per-
ance. In addition, these techniques are also used in the

M-based speech synthesis framework [7] to construct a
ker-specific synthesis system using only a small amount

peech [8]. Generally, the speaker-adaptation techniques
roughly be clustered into three classes [9]; Maximum
osteriori (MAP) adaptation [10], linear transformation
d technique such as Maximum Likelihood Linear Re-
sion (MLLR) [11], or speaker clustering/speaker space
hods such as eigenvoice [12].
In the present paper, a speaker adaptation algorithm
d on feature-space MLLR (fMLLR) [11] 1 for the tra-

ory HMM is derived and evaluated. Although the trajec-
HMM has the same parameterization as the HMM, the

nition of its output probability is different from that of
HMM. Accordingly, the adaptation algorithm should be
erived based on its output probability.
The rest of the present paper is organized as follows:
tion 2 reviews the definition of the trajectory HMM. In
tion 3, fMLLR-based adaptation algorithm for the tra-
ory HMM is derived. Results of a continuous speech
gnition experiment are shown in Section 4. Concluding
arks and future plans are presented in the final section.

In the HMM, feature-space MLLR and constrained model-space
R are identical [11]. However, in the trajectory HMM case model

e has higher dimensionality (typically three times) than that of fea-
space. Because of this property, constrained model-space MLLR and
re-space MLLR have different meaning. In the present paper, we con-
the feature space transformation.
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2. Definition of Trajectory HMMs

The output probability of an acoustic static feature vector

sequence c =
[
c�1 , . . . , c

�
T

]�
for a trajectory HMM Λ is

given by

p (c | Λ) =
∑
all q

p (c | q,Λ) P (q | Λ) , (1)

p (c | q,Λ) = N
(
c | c̄q, Pq

)
, (2)

P (q | Λ) = P (q1 | Λ)
T∏

t=2

P (qt | qt−1,Λ) , (3)

where ct is an M-dimensional acoustic static feature vector
at time t (e.g., MFCC, PLP, etc.), q = {q1, q2, . . . , qT } is a
state sequence,2 qt is the state at time t, and T is the number
of frames in c. In Eq. (2), c̄q and Pq are the MT × 1 mean
vector (smooth trajectory) and the MT × MT temporal co-
variance matrix for q, respectively. They are given by

Rqc̄q = rq, (4)

Rq =W�Σ−1
q W = P−1

q , (5)

rq =W�Σ−1
q μq, (6)

μq =
[
μ�q1
, . . . ,μ�qT

]�
, (7)

μqt =
[
Δ(0)μ�qt

,Δ(1)μ�qt
,Δ(2)μ�qt

]�
, (8)

Δ(d)μqt =
[
Δ(d)μqt (1), . . . ,Δ(d)μqt (M)

]�
, d = 0, 1, 2 (9)

Σq = diag
[
Σq1 , . . . ,ΣqT

]
, (10)

Σqt = diag
[
Δ(0)Σqt ,Δ

(1)Σqt ,Δ
(2)Σqt

]
, (11)

Δ(d)Σqt = diag
[
Δ(d)σqt (1), . . . ,Δ(d)σqt (M)

]
, d = 0, 1, 2

(12)

where μqt and Σqt are the 3M × 1 mean vector and the
3M × 3M covariance matrix associated with the qt-th state,
respectively. In Eqs. (5) and (6), W is a 3MT × MT win-
dow matrix whose elements are given as regression window
coefficients to calculate delta and delta-delta as follows:

Δ(1)ct =

L(1)
+∑

τ=−L(1)
−

w(1)(τ)ct+τ, Δ
(2)ct =

L(2)
+∑

τ=−L(2)
−

w(2)(τ)ct+τ,

(13)

2For notation simplicity, we assume that each state has a Gaussian den-
sity function with a diagonal covariance matrix for its output distribution.
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W = [W1,W2, . . . ,WT ]� ⊗ IM×M , (14)

Wt =
[
w(0)

t ,w
(1)
t ,w

(2)
t

]
, (15)

w(d)
t =

[
0, . . . , 0︸��︷︷��︸
t−L(d)

− −1

,w(d)(−L(d)
− ), . . . ,w(d)(0),

. . . ,w(d)(L(d)
+ ), 0, . . . , 0︸��︷︷��︸

T−
(
t+L(d)

+

)
]�
, d = 0, 1, 2 (16)

= L(0)
+ = 0, and w(0)(0) = 1.

Note that c is modeled by a mixture of Gaussian density
tions whose dimensionality is MT , and the covariance

rices of these Gaussian density functions are generally
. As a result, the trajectory HMM can alleviate the defi-
cies of the HMM. It is also noted that the parameteriza-
of the trajectory HMM is completely the same as that

he HMM with the same model topology.

3. Adaptation of Trajectory HMMs
rently, many state-of-the-art speech recognition systems
pt speaker adaptation techniques. These techniques aim
dapt speaker-independent acoustic models to specific
kers to improve the speech recognition performance.
of the most popular speaker adaptation techniques
aximum Likelihood Linear Regression (MLLR) [11]

re are two well-known forms in the MLLR framework:
el-space and feature-space (MLLR). In this section, the

ure-space MLLR (fMLLR) algorithm is derived for the
ctory HMM.

In fMLLR for the trajectory HMM, an acoustic static
ure vector sequence c is transformed using an MT ×MT
ar transformation matrix A and an MT × 1 bias vector b
ollows:

ĉ =
[
ĉ�1 , . . . , ĉ

�
T

]�
= Ac + b. (17)

s, the output probability of c conditioned on A, b, and
given by

(c | q, A, b,Λ) = |A| N
(
ĉ | c̄q, Pq

)
(18)

= N
(
c | A−1(c̄q − b), A−1 Pq A−�

)
(19)

goal of fMLLR for the trajectory HMM is to find A and
hich maximize the model likelihood for given adaptation

c.
In common with fMLLR for the HMM, the expectation-
imization (EM) algorithm can be used. The auxiliary
tion of the EM algorithm is defined as

(
Λ,Λ′

)
=
∑
all q

p (q | c, A, b,Λ) ·
[

K + log |A|

− 1
2

{(
Ac + b − c̄q

)�
P−1

q

(
Ac + b − c̄q

)}]
, (20)
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Figure 1: Constraints of a linear transformation matrix A
and a bias vector b introduced in fMLLR for the trajectory
HMM.

where K is a constant independent of A and b. Although
A and b could be estimated using Eq. (20), the total num-
ber of parameters is MT × (MT + 1): it is difficult to esti-
mate statistically reliable A and b using a limited amount
of adaptation data because the number of parameters to be
estimated is huge (If T = 1000 and M = 13, total number of
parameters of the linear transform is 1.82 × 108). To avoid
this problem, in the present paper we introduce constraints
into the structure of A and b (see also Fig. 1): A is block-
diagonal and A and b have the parameter sharing structure
which depends on q. For notation simplicity, we assume
that single linear transform is shared over all Gaussian den-
sity functions in a model set.3 Under this assumption, the
transformation matrix A and bias vector b can be written as

A = diag
[
B, . . . , B︸����︷︷����︸

T

]
b =
[
d�, . . . , d�︸�������︷︷�������︸

T

]�
, (21)

where B and d are an M × M transformation matrix and an
M×1 bias vector shared over all Gaussian density functions
in the model set, respectively. As a result, ĉt can be written
using ct, B and d as follows:

ĉt = Bct + d = Xξt, (22)

where X =
[
d�, B�

]� is an (M + 1) × M extended trans-
formation matrix, ξt =

[
1, c�t
]� is an (M + 1) × 1 extended

acoustic static feature vector at time t.
Under the above assumptions, Eq. (20) can be reformu-

lated as the same manner in [11]:

Q(Λ,Λ′) =
∑
all q

p (q | c, X,Λ) ·
[
K + T log

∣∣∣pmx�m
∣∣∣

− 1
2

M∑
m=1

{
xmG(m)

q x�m − 2xm k(m)
q
�} ]

(23)

3If the number of transforms is larger than 1, all transforms are depend
on each other. Therefore, optimization should be iterated not only over
rows but also transforms.
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re

ζ(d)
t =

L(d)
+∑

τ=−L(d)
−

w(d)(τ) · ξt+τ (24)

G(m)
q =

T∑
t=1

2∑
d=0

1
Δ(d)σqt (m)

ζ(d)
t · ζ(d) �

t (25)

k(m)
q =

T∑
t=1

2∑
d=0

1
Δ(d)σqt (m)

Δ(d)μqt (m) · ζ(d)
t . (26)

q. (23), xm corresponds to the m-th row of X and pm is
xtended cofactor row vector given by

pm =
[
0, c(m,1), . . . , c(m,M)

]
(27)

c(m,n) = cof
(
Bm,n
)
. (28)

ing the partial derivative of Eq. (23) with respect to xm

ds

(Λ,Λ′)
∂xm

=
∑
all q

p (q | c, X,Λ) ·
{

pm

pmx�m
− xmG(m)

q + k(m)
q

}

(29)
ng the above equation, X can be iteratively updated us-
a row by row optimization technique described in [11].
For exact computation of Eq. (29), all possible state se-
nces should be evaluated. However, it is intractable be-
se the temporal covariance matrix Pq of the trajectory
M is generally full. Therefore, approximations such as
rbi approximation [5] or Markov Chain Monte Carlo [6]

uld be introduced.

4. Experiments
Experimental conditions

netically balanced 440 of 503 sentences uttered by male
kers MHO, MMY, MSH, MTK, and MYI (2200 sen-
es in total) from the ATR Japanese speech database B-

were used for training context-independent HMMs and
ctory HMMs. Remaining 10 and 53 sentences uttered
male speaker MHT were used for adaptation and eval-

on, respectively. These test utterances had an average
th of 43 phonemes and an average duration of 4 sec-
s.
Speech signals were sampled at 16 kHz and windowed
25-ms Blackman window with a 10-ms shift, and then

-cepstral coefficients were obtained by a mel-cepstral
lysis technique. Static feature vectors consisted of 19
-cepstral coefficients including the zeroth coefficient.
y were augmented by appending their first and second
r dynamic features.

The three-state left-to-right with no-skip structure was
for modeling 36 Japanese phonemes including silence

short pause. Each state had a single Gaussian density
tion with a diagonal covariance matrix. After training



Table 1: Phoneme Error Rates (PER) of the HMMs and
the trajectory HMMs with and without speaker adaptation
(1000+1000 best lists rescoring).

Model Adaptation PER (%)

HMM w/o adapt. 49.3
with adapt. (EM) 34.2

trajectory HMM w/o adapt. 49.6
with adapt. (Viterbi) 32.7
with adapt. (MCEM) 32.8

the HMMs in the standard way, the trajectory HMMs were
iteratively reestimated (two iterations) by the Viterbi train-
ing [5] using the HMMs as its initial models. The number
of delay of the delayed decision Viterbi algorithm [5] for
searching better state sequences was four (beam width was
1500).

In this experiment, static supervised adaptation was
used. For adapting the HMMs, a block-diagonal transfor-
mation matrix structure consisting of three 19 × 19 blocks
was adopted. The trajectory HMMs were adapted using a
19×19 transformation matrix and a 19×1 bias vector. There-
fore, the transform of the HMMs had three times larger
number of parameters than that of the trajectory HMMs. For
approximating Eq. (29), we used the Viterbi approximation
or the Monte Carlo EM (MCEM) algorithm with 100 sam-
ples.

4.2. Experimental results

In the recognition experiment reported in this section, the
rescoring paradigm was used. Two 1000-best list sets were
generated for each test utterance by the HTK Viterbi de-
coder using the HMMs with and without speaker adaptation.
These two 1000-best list sets were merged and then reseg-
mented and rescored by the trajectory HMMs. To give an
idea of the range of merged 1000+1000-best lists, the error
rates of the best, worst, and average of randomly selected
hypotheses (100 times) were 24.4%, 59.5%, and 42.7%, re-
spectively. The best (24.4%) and worst (59.5%) error rates
were the bounds on subsequent rescoring results.

Table 1 shows the phoneme error rates of the HMMs
and trajectory HMMs with and without speaker adaptation.
In the table, EM, Viterbi, and MCEM denotes that the lin-
ear transforms were estimated using the exact EM algo-
rithm, the Viterbi approximation, and the MCEM algorithm
with 100 samples, respectively. It shows that the speaker-
adapted trajectory HMMs achieved 17% relative error re-
duction over the trajectory HMM without adaption. Al-
though the recognition performance of the HMMs and the
trajectory HMMs without adaptation was almost the same,
the adapted trajectory HMMs achieved 4% relative error re-
duction over the HMMs with adaptation in this experiment.
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could not see any significant difference in the recogni-
performance between Viterbi training and MCEM al-

thm for estimating the linear transforms.

5. Conclusion
he present paper, a speaker adaptation technique for
trajectory HMM based on feature-space MLLR was de-
d and evaluated. The speaker-adapted trajectory HMMs
ieved 17% and 4% relative error reduction over the tra-
ory HMMs without adaptation and the corresponding
Ms with adaptation, respectively.
Future plan includes introducing the different con-
ints into the structure of the linear transforms and eval-
ng the performance with multiple transforms. Large-
e evaluation is also necessary.
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