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ABSTRACT 

This paper proposes a formant-based approach for 
computer-assisted English vowel assessment. Various 
studies in formant-based speech synthesis have suggested 
the importance of formant coefficients; this motivates us to 
investigate pronunciation assessment using formant 
information instead of MFCC (Mel-frequency cepstral 
coefficients) alone. In particular, we explore the multi-
stream HMM with the addition of formant information to 
improve the phoneme segmentation. We then propose the 
use of PCN (pronunciation confusion network) together 
with a formant-based confidence measure to improve error 
detection rates. Furthermore, the pros and cons of using 
cross-word phone model for both native speakers and L2 
learners are discussed. Experimental results demonstrate 
the feasibility of the proposed approach for automatic 
vowel pronunciation assessment. 
Index Terms: computer assisted pronunciation training, 
formant, assessment, pronunciation confusion network, 
speech recognition 

1. INTRODUCTION 

In computer assisted pronunciation training (CAPT), it is 
well known that the pronunciation of vowels is much more 
important than that of consonants. Successful CAPT 
applications have been reported 0, but few of them have 
considered the influence of formants for the pronunciation 
modeling of vowels. 

Correct formation of oral cavity is the most important 
factor for generating correct vowel pronunciation. The 
relationship between formants and the oral cavity has been 
discussed in the literature [10]. In this paper, we propose a 
pronunciation assessment method based on HMM and 
formant coefficients, which is able to give reliable 
assessments about the articulator. Previously MFCC-based 
approach assesses the pronunciation based on the log-
probability of acoustic models of the underlying utterances 
[7]. However, the information of exact formant coefficients, 
such as F1 and F2, are partially missed due to the feature 
reduction of triangular filter bank when computing MFCC. 
Therefore, we propose a formant-based pronunciation 
assessment system, which involves the following three 
phases: 

1. Preprocessing phase: Acoustical model training using 
MFCC and normalized formant coefficients. 
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Recognition phase: Vowel pronunciation labeling and 
segmentation using PCN. 
Confidence measure: Ranking-based formant-level 
assessment. 

Methodologies of these three phases are described in the 
ing sections. The rest of this paper is organized as 
s. Section 2 explains various techniques used in our 

ach. Section 3 demonstrates the experimental results and 
on 4 gives concluding remarks. 

2. THE PROPOSED APPROACH 

utomatic Phoneme Segmentation  

 flowchart of the proposed system. In the flowchart, PCN 
unciation confusion network) is used to embed common 
patterns for achieving better error detection. Another 

rtant block is formant-level assessment, which is 
nsible for computing confidence measure in the phone-
pronunciation. To achieve a reliable performance, an 

ate phoneme segmentation is crucial. All the acoustic 
ls are trained without manual labeling/segmentation. 
arable performance has been achieved with similar 

gs in previous work [1]. 
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e 1. The system flowchart. 

ormant Normalization 

se the ESPS software [3] to extract formant coefficients. 
ant is highly speaker-dependent, so numerous approaches 
mant normalization are proposed in the literature [2][9], 
w of them considered the factor of language transfer for 

arner. Moreover, formant coefficients depend not only on 
rticulator of the speaker but also on his/her native 
age. Hence we need to normalize the formant coefficients 
nsidering the influence of the L1 language. Our corpus 
ins both Mandarin and English sentences, thus the F1 and 
 five basic vowels (“aa”, “eh”, “iy”, “ow” and “uw”) for 
speaker can be extracted first. The maximum and 
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minimum of F1 and F2 of five vowels for both languages 
can then be used in computing the normalized formant 
coefficients, as shown in Figure 2. For a given L2 learner, 
for instance, the normalized F1 of the phone model “er” of 
English can be calculated as: 

1F1F

1F1
)1(

MinMax
MinF

Fnormalize er
er ,

where MaxF1, MinF1can be derived as: 

),(
),(

1F21F11F

1F21F11F

MinLMinLMinMin
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Figure 2. Speaker-dependent normalization of F1 and F2 
for model “er”.

In others words, formant coefficients can be 
normalized to the ragne [0, 1] for each speaker. To verify 
the usability of formant tracking and normalization, a 
HMM-based vowel classifier (comparable with the system 
of Schmid et al [9]) for TIMIT was designed to achieve 
70% classification accuracy for 14 vowels and 4 semi-
vowels. 

2.3. Formant-based HMM 

MFCC-based HMM is widely used in speech recognition 
and segmentation. However, MFCC cannot capture detailed 
formant information due to the feature reduction process of 
triangular filter bank. To improve the phoneme 
segmentation performance, we propose a multi-stream 
HMM employing both MFCC and formant coefficients as a 
new feature set. With a set of suitable stream weights, the 
new features set can effectively improve phoneme 
segmentation, in particular for vowels, as shown in the 
experimental results. 

Context-dependent HMM is a typical technique in 
phoneme segmentation. In order to increase the robustness 
of speech recognition, the cross-word phone model is 
commonly adopted in the literature. However, our 
experiments demonstrate that cross-word phone models are 
not suitable for utterances from L2 learners since they are 
usually not fluent in coarticulation between words. The 
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and cons of using cross-word phone models will be 
ssed in Section 3. 

ronunciation Confusion Network 

onunciation confusion network (PCN) is recognition 
rk that comprises the common pronunciation errors for 
arner. Using Viterbi decoding on the utterance and a 
 PCN in the phoneme level proved to be an effective way 
ect the pronunciation variation [12]. 
Most of the typical pronunciation errors of L2 learners 
 from the different phonological structure between the L2 
age and native languages [10]. Therefore it is essential to 
der the native language when designing a CAPT system. 
 1 lists some of the common English pronunciation errors 
ding both vowels and constants) for Chinese in Taiwan 
o detect these errors in the assessment, these patterns are 
dded into a PCN. For example, Figure 3 shows the PCN 
e word “husband”, where the solid lines indicate the 
ct sequence of the pronunciation and the dotted lines 
de alternative paths to detect the possible pronunciation 
 by L2 learner. The “sil” nodes represent the start and the 
f the utterance. To align the usually long and influent 
nce of an L2 learner, a dynamic insertion approach is 
here [6]. Note that in this paper, we use the pronunciation 
nary from CMU. 

Type Pair-wise Confusion Phones  

el Substitution z/s, ah/aa, d/t, ih/iy, ai/aa, 
eh/ey/ae, uh/uw, ow/ao, aa/ao  

sonant Deletion hh/[], r/[], ks/[]s  
sonant Substitution th/s, th/l, th/d 

 1. Some of the common English pronunciation errors for 
se in Taiwan. (“[]” indicates deletion.) 

e 3. The PCN for the word “husband” in the phone-level.  

ormant-level Assessment  

CN approach can help us to detect typical pronunciation 
 that are known in advance. However, to deal with error 
ns that are not known in advance, a more general and 
t error detection method is called for. To this end, we 
se a ranking-based confidence measure (RCM), as 
ined next. 
A formant-based multi-stream HMM can be used to better 
 the phoneme boundaries of a context-dependent triphone 
l (CDTM). In this study, for each CDTM, we can  
ute its time-normalized log-probability. Instead of using 
log-probability directly, we define a ranking-based 



confidence measure (RCM) that takes both the ranking as 
well as the gap in log-probabilities into consideration. For 
instance, for a given CDTM “f-ao+r”, we need to compute 
the time-normalized log-probabilities of the competing 
CDTMs, defined as the CDTMs of the form “f-*+r”, where 
* is a wildcard. After sorting these log-probabilities based 
on descending order, the confidence measure of a CDTM c,
denoted by CConf , is defined as: 

cc
C Rank

Conf
ProbProb1exp1

2

max

,

where Probc is the log-probability of c, Rankc is the 
corresponding rank among all competing CDTMs, and 
Probmax is the max log-probability of all competing CDTMs. 
The constant  is set to 0.09 empirically. The value of 

CConf is always between 0 and 1. 
The above rank-based confidence measure is 

commonly used in utterance verification [11]. The 
threshold of the confidence measure for rejection is set to a 
value that minimizes the total error counts of false positive 
and false negative of all CDTMs. The performance 
evaluation will be covered in Section 3. 

3. EXPERIMENTAL RESULTS 

Our experiment is based on EAT (English Across Taiwan) 
corpus recorded by 1200 subjects [5]. This corpus contains 
96000 sentences, with 80 sentences for each person, in 
which 13 sentences contain both Mandarin and English 
while the other 67 are purely English. For microphone 
recordings, half of the subjects are Foreign Language 
Department students and others are Non-English 
Department student, denoted as EAT_Eng and 
EAT_NonEng respectively. One-forth sentences are used 
as test data while the others are training data for both 
EAT_Eng and EAT_NonEng. A set of acoustic models of 
native speakers is also obtained using TIMIT corpus. 
According to the default setting in [8], we take the 3696 
sentences as training data and the others as test data. 

The acoustic analysis is performed at 10 ms frame rate 
using 20 ms hamming window. Each spectral feature vector 
contains 39 dimensions, including 12 MFCC and 1 log 
energy, and their delta and double delta values. In 
particular, the delta and double delta operators are also 
applied to the F1 and F2 formant coefficients, resulting in 
six formant features denoted as  Formant6. F3, F4 and F5 
are skipped due to their instability. 

For the multi-stream HMM, we use context-dependent 
tri-phone model, with three states in each phone model. 
Within each state, six Gaussian mixtures are used in 
MFCC39 stream and two in Formant6 stream.  

To compare the accuracy of automatic phoneme 
segmentation, the manual transcription of TIMIT and the 
same 512 sentences were used as the test data, as described 
in [8]. The performance of correctly positioned boundaries 
within 20 ms is 78.3% using MFCC39 only, which is about 
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mprovement over those achieved in Brugnara et al [1]. 
rimary reason of improvement is due to the use of cross-

 tri-phone model (as compared with bi-phone model) and 
mensional MFCC (as compared with 26-dimensional 
C). 

am Weighting for MFCC39:Formant6

Vowels  
coustic Models

Non-Vowels 
Acoustic Models 

HMM without 
Cross-Word 

2 : 0 for both 78.3% 
1 : 1 for both 73.7% 

1.4 : 0.6 1.8 : 0.2 74.4% 
1.8 : 0.2 1.99 : 0.01 79.1% 
1.9 : 0.1 1.999 : 0.001 79.6% 

able 2. Percentages within 20 ms tolerance for correctly 
oned boundaries of TIMIT. (The “Non-Vowels” category 
des semivowels-glides, stops, nasals, fricatives and 
atives).  

 2 lists segmentation accuracy with the introduction of 
nts. From the table, it is obvious that different stream 
ting leads to different performance. Using equal weights 
for both vowels and consonants generates the worst 

rmance, which is reasonable since most consonants do not 
a stable formant structure. The best performance of 
 is at the last row of Table 2, which indicates an 
vement of 1.3% (over the first row of the MFCC39-only 

 when two suitable set of weights (one for vowels, the 
 for non-vowels) are applied to the Formant6 stream. 

pus Cross-Word HMM  Cross-Word HMM 

IT 68.58% 70.25% 
_Eng 56.48% 55.29% 
_NonEng 54.86% 53.47% 
able 3. Continuous phone recognition with no language 
l. The feature set is MFCC39 and Formant6, with the best 
 weighting obtained from Table 2. 

 continuous phone recognition test without phone-level 
age model is performed to verify our acoustic model for 
Eng and EAT_NonEng, as shown in Table 3. The test set 

MIT is the same as the 160 sentences used by Lee [8]. For 
EAT_ENG and EAT_NonEng corpus, we manually 
d 400 utterances at the phone-level and used them as the 
et. From the table, it is obvious that the cross-word 
ach increases the recognition rates by 1.6% for TIMIT 
e speakers) but decreases by 1.19% and 1.39% for 
Eng and EAT_NonEng (representing corpra from L2 

ers), respectively, indicating that the cross-word model is 
itable for EAT (both EAT_Eng and EAT_NonEng) since 

 non-native utterances are not fluent in nature. Moreover, 
EAT_Eng category has a better recognition than 
NonEng, meaning that the identified acoustic models are 

 consistent for the students at the Foreign Language 
rtment student than those in other departments. Note that 



EAT corpus does not have phone-level manual 
transcription, therefore the performance may degrade due 
to the miss of phone boundary information during training 

To determine the threshold of RCM, the training 
portion of TIMIT (with manual segmentation) were used to 
plot the receiver operating characteristic (ROC) curves, as 
shown in Figure 4. The circle represents the true positive 
(false accept) while the square represents the true negative 
(false reject). The equal-error-rate threshold of 0.67 is 
selected for our system.  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100
Error Pronunciation Detection Accuracy Rate With RCM

threshold

A
cc

ur
ac

y 
R

at
e 

(%
)

true positive
true negitive
Equal Error Rate

Figure 4. The ROC curve of RCM using different 
thresholds. 

To verify the performance of the proposed RCM, in 
additional to the test data of TIMIT, we also asked an 
English expert to label 400 sentences of EAT_NonEng 
corpus for further test. The test was performed using the 
acoustic models from EAT_Eng and the RCM threshold 
from TIMIT. Table 4 lists the detection rates (equal to the 
sum of true positives and true negatives divided by all test 
data) of various setups. Note that the method “PCN + 
RCM” listed in Table 4 is a 2-pass scoring process, in 
which the RCM is applied after PCN. It is obvious that 
RCM can reduce the error rate and refine the result of PCN. 
Note that the threshold may not work well in Case 2 
because of the mismatch between the acoustic models of 
TIMIT and EAT. It is believed that if we can obtain the 
RCM threshold from EAT (which is impossible at this 
stage since EAT does not have phone-level manual 
transcription), the performance of Case 2 will be better. 

Method 
Cases PCN PCN + RCM

1. Test data: TIMIT 
Acoustic model: TIMIT 
RCM threshold: TIMIT 

85.15% 87.95% 

2. Test data: EAT_NonEng 
Acoustic Model: EAT_Eng
RCM threshold: TIMIT 

79.27% 80.79% 

Table 4. Error detection rates of the vowel pronunciation.
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4. CONCLUSIONS 

is paper, we have proposed a CAPT system of English 
l learning for Chinese people in Taiwan. The flexibility of 
roposed approach provides a more delicate way to 

sing the vowel pronunciation for L2 learner. To detect 
eseen pronunciation errors, a ranking-based confidence 
ure (RCM) using formant information is proposed. 
rimental results demonstrate the feasibility of the 
sed approach. 
mediate future work of this study will focus on the 

acy of the phoneme segmentation and the robustness of 
-stream HMM. Additional acoustic features that are not 
dded in MFCC will be introduced for HMM in order to 
ve better performance in phoneme segmentation, 
ularly for utterances from L2 learners.  
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