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ABSTRACT

This paper proposes a formant-based approach for
computer-assisted English vowel assessment. Various
studies in formant-based speech synthesis have suggested
the importance of formant coefficients; this motivates us to
investigate pronunciation assessment using formant
information instead of MFCC (Mel-frequency cepstral
coefficients) alone. In particular, we explore the multi-
stream HMM with the addition of formant information to
improve the phoneme segmentation. We then propose the
use of PCN (pronunciation confusion network) together
with a formant-based confidence measure to improve error
detection rates. Furthermore, the pros and cons of using
cross-word phone model for both native speakers and L2
learners are discussed. Experimental results demonstrate
the feasibility of the proposed approach for automatic
vowel pronunciation assessment.

Index Terms: computer assisted pronunciation training,
formant, assessment, pronunciation confusion network,
speech recognition

1. INTRODUCTION

In computer assisted pronunciation training (CAPT), it is
well known that the pronunciation of vowels is much more
important than that of consonants. Successful CAPT
applications have been reported 0, but few of them have
considered the influence of formants for the pronunciation
modeling of vowels.

Correct formation of oral cavity is the most important
factor for generating correct vowel pronunciation. The
relationship between formants and the oral cavity has been
discussed in the literature [10]. In this paper, we propose a
pronunciation assessment method based on HMM and
formant coefficients, which is able to give reliable
assessments about the articulator. Previously MFCC-based
approach assesses the pronunciation based on the log-
probability of acoustic models of the underlying utterances
[7]. However, the information of exact formant coefficients,
such as F1 and F2, are partially missed due to the feature
reduction of triangular filter bank when computing MFCC.
Therefore, we propose a formant-based pronunciation
assessment system, which involves the following three
phases:

1. Preprocessing phase: Acoustical model training using

MFCC and normalized formant coefficients.
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2. Recognition phase: Vowel pronunciation labeling and
segmentation using PCN.

3. Confidence measure: Ranking-based formant-level
assessment.

Methodologies of these three phases are described in the
following sections. The rest of this paper is organized as
follows. Section 2 explains various techniques used in our
approach. Section 3 demonstrates the experimental results and
Section 4 gives concluding remarks.

2. THE PROPOSED APPROACH
2.1. Automatic Phoneme Segmentation

is the flowchart of the proposed system. In the flowchart, PCN
(pronunciation confusion network) is used to embed common
error patterns for achieving better error detection. Another
important block is formant-level assessment, which is
responsible for computing confidence measure in the phone-
level pronunciation. To achieve a reliable performance, an
accurate phoneme segmentation is crucial. All the acoustic
models are trained without manual labeling/segmentation.
Comparable performance has been achieved with similar
settings in previous work [1].

Evaluate Formant-based
Utterance HMM

v v
Pronunciation
Formant . Formant-level
. . » Confusion [
Normalization Assessment
Network

Figure 1. The system flowchart.
2.2. Formant Normalization

We use the ESPS software [3] to extract formant coefficients.
Formant is highly speaker-dependent, so numerous approaches
to formant normalization are proposed in the literature [2][9],
but few of them considered the factor of language transfer for
L2 learner. Moreover, formant coefficients depend not only on
the articulator of the speaker but also on his/her native
language. Hence we need to normalize the formant coefficients
by considering the influence of the L1 language. Our corpus
contains both Mandarin and English sentences, thus the F1 and
F2 of five basic vowels (“aa”, “eh”, “iy”, “ow” and “uw”) for
each speaker can be extracted first. The maximum and

September 17-21, Pittsburgh, Pennsylvania



INTERSPEECH 2006 — ICSLP

minimum of F1 and F2 of five vowels for both languages
can then be used in computing the normalized formant
coefficients, as shown in Figure 2. For a given L2 learner,
for instance, the normalized F1 of the phone model “er” of
English can be calculated as:
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Figure 2. Speaker-dependent normalization of F1 and F2
for model “er”.

In others words, formant coefficients can be
normalized to the ragne [0, 1] for each speaker. To verify
the usability of formant tracking and normalization, a
HMM-based vowel classifier (comparable with the system
of Schmid et al [9]) for TIMIT was designed to achieve
70% classification accuracy for 14 vowels and 4 semi-
vowels.

2.3. Formant-based HMM

MFCC-based HMM is widely used in speech recognition
and segmentation. However, MFCC cannot capture detailed
formant information due to the feature reduction process of
triangular filter bank. To improve the phoneme
segmentation performance, we propose a multi-stream
HMM employing both MFCC and formant coefficients as a
new feature set. With a set of suitable stream weights, the
new features set can effectively improve phoneme
segmentation, in particular for vowels, as shown in the
experimental results.

Context-dependent HMM is a typical technique in
phoneme segmentation. In order to increase the robustness
of speech recognition, the cross-word phone model is
commonly adopted in the literature. However, our
experiments demonstrate that cross-word phone models are
not suitable for utterances from L2 learners since they are
usually not fluent in coarticulation between words. The

pros and cons of using cross-word phone models will be
discussed in Section 3.

2.4. Pronunciation Confusion Network

A pronunciation confusion network (PCN) is recognition
network that comprises the common pronunciation errors for
L2 learner. Using Viterbi decoding on the utterance and a
given PCN in the phoneme level proved to be an effective way
to detect the pronunciation variation [12].

Most of the typical pronunciation errors of L2 learners
come from the different phonological structure between the L2
language and native languages [10]. Therefore it is essential to
consider the native language when designing a CAPT system.
Table 1 lists some of the common English pronunciation errors
(including both vowels and constants) for Chinese in Taiwan
[4]. To detect these errors in the assessment, these patterns are
embedded into a PCN. For example, Figure 3 shows the PCN
of the word “husband”, where the solid lines indicate the
correct sequence of the pronunciation and the dotted lines
provide alternative paths to detect the possible pronunciation
errors by L2 learner. The “sil” nodes represent the start and the
end of the utterance. To align the usually long and influent
utterance of an L2 learner, a dynamic insertion approach is
used here [6]. Note that in this paper, we use the pronunciation
dictionary from CMU.

Pair-wise Confusion Phones
z/s, ah/aa, d/t, ih/iy, ai/aa,
eh/ey/ae, uh/uw, ow/ao, aa/ao
hh/[], 1/[], ks/[]s
th/s, th/l, th/d

Type

Vowel Substitution

Consonant Deletion
Consonant Substitution

Table 1. Some of the common English pronunciation errors for
Chinese in Taiwan. (“[]” indicates deletion.)

Figure 3. The PCN for the word “husband” in the phone-level.
2.5. Formant-level Assessment

The PCN approach can help us to detect typical pronunciation
errors that are known in advance. However, to deal with error
patterns that are not known in advance, a more general and
robust error detection method is called for. To this end, we
propose a ranking-based confidence measure (RCM), as
explained next.

A formant-based multi-stream HMM can be used to better
align the phoneme boundaries of a context-dependent triphone
model (CDTM). In this study, for each CDTM, we can
compute its time-normalized log-probability. Instead of using
the log-probability directly, we define a ranking-based
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confidence measure (RCM) that takes both the ranking as
well as the gap in log-probabilities into consideration. For
instance, for a given CDTM “f~ao+r”, we need to compute
the time-normalized log-probabilities of the competing
CDTMs, defined as the CDTMs of the form “f-*+r”, where
* is a wildcard. After sorting these log-probabilities based
on descending order, the confidence measure of a CDTM c,
denoted by Conf,., is defined as:

2
1+exp(a - (Rank, —1)-(Prob

C ~ = )
onfe —Prob, ))

max

where Prob. is the log-probability of ¢, Rank. is the
corresponding rank among all competing CDTMs, and

Prob,,,, is the max log-probability of all competing CDTMs.

The constant ¢ is set to 0.09 empirically. The value of
Conf,. is always between 0 and 1.

The above rank-based confidence measure is
commonly used in utterance verification [11]. The
threshold of the confidence measure for rejection is set to a
value that minimizes the total error counts of false positive
and false negative of all CDTMs. The performance
evaluation will be covered in Section 3.

3. EXPERIMENTAL RESULTS

Our experiment is based on EAT (English Across Taiwan)
corpus recorded by 1200 subjects [5]. This corpus contains
96000 sentences, with 80 sentences for each person, in
which 13 sentences contain both Mandarin and English
while the other 67 are purely English. For microphone
recordings, half of the subjects are Foreign Language
Department students and others are Non-English
Department  student, denoted as EAT Eng and
EAT NonEng respectively. One-forth sentences are used
as test data while the others are training data for both
EAT _Eng and EAT NonEng. A set of acoustic models of
native speakers is also obtained using TIMIT corpus.
According to the default setting in [8], we take the 3696
sentences as training data and the others as test data.

The acoustic analysis is performed at 10 ms frame rate
using 20 ms hamming window. Each spectral feature vector
contains 39 dimensions, including 12 MFCC and 1 log
energy, and their delta and double delta values. In
particular, the delta and double delta operators are also
applied to the F1 and F2 formant coefficients, resulting in
six formant features denoted as Formants. F3, F4 and F5
are skipped due to their instability.

For the multi-stream HMM, we use context-dependent
tri-phone model, with three states in each phone model.
Within each state, six Gaussian mixtures are used in
MFCC;4 stream and two in Formantg stream.

To compare the accuracy of automatic phoneme
segmentation, the manual transcription of TIMIT and the
same 512 sentences were used as the test data, as described
in [8]. The performance of correctly positioned boundaries
within 20 ms is 78.3% using MFCC;4 only, which is about

5% improvement over those achieved in Brugnara et al [1].
The primary reason of improvement is due to the use of cross-
word tri-phone model (as compared with bi-phone model) and
39-dimensional MFCC (as compared with 26-dimensional
MFCCQ).

Stream Weighting for MFCCj;9:Formant .
Vowegls : N01319-Vowels : Hé\f (l)\;lsf}wgfélt
Acoustic Models Acoustic Models

2 : 0 for both 78.3%

1 : 1 for both 73.7%
1.4:0.6 1.8:0.2 74.4%
1.8:0.2 1.99 : 0.01 79.1%
1.9:0.1 1.999 : 0.001 79.6%

Table 2. Percentages within 20 ms tolerance for correctly
positioned boundaries of TIMIT. (The “Non-Vowels” category
includes semivowels-glides, stops, nasals, fricatives and
affricatives).

Table 2 lists segmentation accuracy with the introduction of
formants. From the table, it is obvious that different stream
weighting leads to different performance. Using equal weights
(1:1) for both vowels and consonants generates the worst
performance, which is reasonable since most consonants do not
have a stable formant structure. The best performance of
79.6% is at the last row of Table 2, which indicates an
improvement of 1.3% (over the first row of the MFCCsy-only
case) when two suitable set of weights (one for vowels, the
other for non-vowels) are applied to the Formant, stream.

Corpus Cross-Word HMM Cross-Word HMM
TIMIT 68.58% 70.25%
EAT Eng 56.48% 55.29%
EAT NonEng 54.86% 53.47%

Table 3. Continuous phone recognition with no language
model. The feature set is MFCCs9 and Formants, with the best
stream weighting obtained from Table 2.

A continuous phone recognition test without phone-level
language model is performed to verify our acoustic model for
EAT Eng and EAT NonEng, as shown in Table 3. The test set
of TIMIT is the same as the 160 sentences used by Lee [8]. For
each EAT ENG and EAT NonEng corpus, we manually
labeled 400 utterances at the phone-level and used them as the
test set. From the table, it is obvious that the cross-word
approach increases the recognition rates by 1.6% for TIMIT
(native speakers) but decreases by 1.19% and 1.39% for
EAT Eng and EAT NonEng (representing corpra from L2
learners), respectively, indicating that the cross-word model is
not suitable for EAT (both EAT Eng and EAT NonEng) since
these non-native utterances are not fluent in nature. Moreover,
the EAT Eng category has a better recognition than
EAT NonEng, meaning that the identified acoustic models are
more consistent for the students at the Foreign Language
Department student than those in other departments. Note that
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EAT corpus does not have phone-level manual
transcription, therefore the performance may degrade due
to the miss of phone boundary information during training

To determine the threshold of RCM, the training
portion of TIMIT (with manual segmentation) were used to
plot the receiver operating characteristic (ROC) curves, as
shown in Figure 4. The circle represents the true positive
(false accept) while the square represents the true negative
(false reject). The equal-error-rate threshold of 0.67 is
selected for our system.
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Figure 4. The ROC curve of RCM using different
thresholds.

To verify the performance of the proposed RCM, in
additional to the test data of TIMIT, we also asked an
English expert to label 400 sentences of EAT NonEng
corpus for further test. The test was performed using the
acoustic models from EAT Eng and the RCM threshold
from TIMIT. Table 4 lists the detection rates (equal to the
sum of true positives and true negatives divided by all test
data) of various setups. Note that the method “PCN +
RCM” listed in Table 4 is a 2-pass scoring process, in
which the RCM is applied after PCN. It is obvious that
RCM can reduce the error rate and refine the result of PCN.
Note that the threshold may not work well in Case 2
because of the mismatch between the acoustic models of
TIMIT and EAT. It is believed that if we can obtain the
RCM threshold from EAT (which is impossible at this
stage since EAT does not have phone-level manual
transcription), the performance of Case 2 will be better.

Method

PCN PCN + RCM
Cases

1. Test data: TIMIT

Acoustic model: TIMIT 85.15% 87.95%
RCM threshold: TIMIT

D. Test data: EAT NonEng
Acoustic Model: EAT Eng 79.27% 80.79%

RCM threshold: TIMIT

Table 4. Error detection rates of the vowel pronunciation.

4. CONCLUSIONS

In this paper, we have proposed a CAPT system of English
vowel learning for Chinese people in Taiwan. The flexibility of
the proposed approach provides a more delicate way to
assessing the vowel pronunciation for L2 learner. To detect
unforeseen pronunciation errors, a ranking-based confidence
measure (RCM) using formant information is proposed.
Experimental results demonstrate the feasibility of the
proposed approach.

Immediate future work of this study will focus on the
accuracy of the phoneme segmentation and the robustness of
multi-stream HMM. Additional acoustic features that are not
embedded in MFCC will be introduced for HMM in order to
achieve better performance in phoneme segmentation,
particularly for utterances from L2 learners.
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