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Abstract

The goal of acoustic Language Identification (LID) is to
identify the language of spoken utterances. The described
system is based on parallel Hidden Markov Model (HMM)
phoneme recognizers. The standard approach for parameter
learning of Hidden Markov Model parameters is Maximum
Likelihood (ML) estimation which is not directly related to
the classification error rate. Based on the Minimum Clas-
sification Error (MCE) parameter estimation scheme we in-
troduce Minimum Language Identification Error (MLIDE)
training that results in HMM model parameters (mean vec-
tors) that give minimum classification error on the training
data. Using a large telephone speech corpus with 7 lan-
guages achieve a language classification error rate of 4.7%
which is a 40% reduction of error rate compared with a
baseline system using ML trained HMMs. Even if the sys-
tem trained on fixed network telephone speech is applied
to mobile network speech data MLIDE can greatly improve
the system performance.
Index Terms: Automatic Language Identification, Hidden
Markov Model training, discriminative training, Minimum
Classification Error

1. Introduction

Automatic acoustic Language Identification (LID) aims to
determine the language of spoken utterances. One of the
most successful approach to LID is the use of Parallel Pho-
neme Recognizers (PPR, [1]) based on Hidden Markov
Models (HMMs). Usually the parameters of such HMMs
are based on an Maximum Likelihood (ML) objective which
is not directly related to the language identification error
rate.

In automatic speech recognition so called discriminative
training criteria like Maximum Mutual Information (MMI)
and Minimum Classification Error (MCE, [2]) have become
popular for estimation of model parameters ([3]). The key
issue in discriminative training is the fact that for estima-
tion of a model not only the data and the specific model are
considered but also competitive models and patterns from
competitive classes.
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In [4] parameters of Gaussian Mixture Models (GMMs)
Language Identification were optimized based on Min-
m Classification Error (MCE) objective. In [4] the
I database was used which contains only a rather small
unt of speech data.
In the described work we apply discriminative param-
optimization based on MCE to mean vectors of Hid-
Markov Models (HMMs) use for parallel phoneme rec-
izers in combination with an Artificial Neural Network
N). Minimum Language Identification Error (MLIDE)
ing aims to find a set of model parameters with mini-

language identification error rate on the set of train-
patterns. For experimental investigations we use 7 lan-
ges from the SpeechDat II Corpus ([5]) which offers a
e amount of speech data (about 30 hours per language)
ch is crucial for discriminative training methods ([6]).

2. General LID System Description

described language identification system consists of
ral language dependent phoneme recognizers option-
using an integrated language specific phoneme bigram
el and one common Artificial Neural Network (ANN).
re 1 illustrates the system architecture.
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re 1: Example LID System for 3 languages with 3 Lan-
ge Dependent (LD) phoneme recognizers.

Each language specific phoneme recognizer computes
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the negative log likelihood for the feature vector sequence
based on first best Viterbi decoding. In oder to roughly ap-
proximate a-posteriori probabilities we use a very simple
normalization technique where we subtract the sum of the
minimal neg-log state specific likelihoods and divide by the
number of frames (see [7]). To make immediate use of this
normalized scores we can use a minimum detector to find
the most probable language. This language decision or the
neg-log scores respectively are the system output when no
ANN is in use.

In order to improve the classification performance and
to better approximate the a-posteriori language probabili-
ties an Artificial Neural Network (ANN) is employed. We
are using a two layer perceptron with both the number of in-
put nodes and output nodes being the number of considered
languages. The ANN is trained using the neg-log scores
from the language dependent phoneme recognizers as input
an a binary pattern as output — the output value for the spo-
ken value is always 1. Trained with minimum square error
objective the output nodes should well approximate the a-
posteriori probabilities for the considered languages. For a
language decision a maximum detector after the ANN must
be applied.

3. MCE Training of HMMs for LID

The basic idea of Minimum Classification Error (MCE)
Training is a differentiable objective function lMCE that ap-
proximates the classification error rate. The goal is to find
a set of parameters Λ that minimizes the objective function
for a set of training patterns {Sr}:

ΛMCE = argmin
Λ

lMCE(Λ, {Sr}) (1)

In case of acoustic Language Identification (LID) the ob-
jective function for Minimum Language Identification Error
(MLIDE) training approximates the language classification
error rate. In the described work only the mean vectors of
the Hidden Markov Models as the parameters Λ were opti-
mized. For the optimization of the model parameters we
apply a simple iterative gradient algorithm with constant
learning rate ε:

Λk+1 = Λk − ε · ∇l({Sr}, Λk) (2)

lMCE is the mean value of l(Sr, Λ) for all training patterns
Sr. l(S, Λ) is defined via a sigmoid function based of the
discriminant function d:

l(S, Λ) =
1

1 + e−γd(S,Λ)
(3)

One important aspect of real world MCE training is to find
an appropriate value for γ controlling the slope of the sig-
moid function. For the definition of the MCE discrimination
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tion d the logarithmic model probabilities

g(S, λ) = −logP (S|λ) (4)

essential:

S, Λ) = g(S, λi) + log

⎛
⎝ 1

J − 1

∑
j �=i

e−g(S,λj)η

⎞
⎠

1

η

(5)

exponent η hereby determines how many models (the
l number of models is J) contribute to the objective
tion. For η → ∞ only the correct model λi and the
matching competitive model for a pattern contribute to

objective function.
In case of an acoustic LID system based on Parallel Pho-
e Recognition (PPR) the models λ consist of phoneme
gnizers with language models for phonemes. Here the
els for the correct (spoken) language i = Ω(S) as well
ll other models are taken into account. Note that the
neme language models will contribute to the objective
tion even if we only optimize the HMM mean vectors.

In order to implement MLIDE training of HMMs pho-
e recognizers delivering the model probabilities are

ded. In the described work we use a first-best contin-
s phoneme recognizer based on Viterbi decoding. State
l alignment that is needed for parameter re-estimation is
ormed by an extra forced Viterbi step.
To illustrate the outcome of MLIDE optimization of
M mean vectors let us consider the case η → ∞. Then
sitive value of d(S, Λ) corresponds to a case where the
system was not able to correctly classify the pattern.

e versa a negative value of d occurs in case of a correct
sification. In any case the mean vectors from the correct
el will be drawn towards the aligned feature vectors and
mean vectors of the competitive model will be drawn
y from the aligned feature vector. The absolute value
determines how strongly the mean vectors are shifted.
shift will be highest for small values of |d| and become
r large values of |d|. In this way the MLIDE training is
inated by patterns at the classification boundaries.

4. Experiments and Results

Databases and System Setup

training and evaluation we are using the Speech-
II, Polyphone and SpeechDat II Mobile databases.

m SpeechDat II and Polyphone we use Italian, Span-
French, German, Polish, English and Dutch languages.
HMM parameter estimation the official set of training
kers from SpeechDat II are employed (17352 speak-

. The official set of test speakers from SpeechDat II was
ded in a development set (2819 speakers) used for op-
zations of the ANNs and an evaluation set (955 speak-
for LID tests. A set of 813 speakers from SpeechDat



II Mobile was used for LID evaluation on mobile data. For
the mobile data we are using Italian, English, German and
Dutch language.

For training and evaluation phonetically rich sentences
are used. Utterances with the exact wordings apearing in
the test utterances were removed from the training set as
in [8]. Phonetically rich sentences in SpeechDat II have a
mean length of 7 seconds. Phonetically rich sentences in
SpeechDat II Mobile have a mean length of 8 seconds.

The underlying CDHMM system was originally de-
signed and developed for automatic speech recognition. The
Maximum Likelihood (ML) HMM parameters are indeed
the same as used for simple language dependent speech
recognition. We are using 3-state mono-phone models in
Bakis-topology with fixed transition penalties. For each
language a set of 2048 Gaussian densities with diagonal
covariance matrices and only one global variance param-
eter is applied. Feature extraction is based on MFCCs to-
gether with a linear transformation from Linear Discrimi-
nant Analysis (LDA) with multilingual mono-phone state
being the classes. In future systems we want to use language
dependent mono-phone models as classes for the LDA ma-
trix estimation.

The phoneme bigram models are estimated on the tran-
scriptions of phonetically rich sentences in the databases
used for HMM training. The parameter of this language
models are estimated with Maximum Likelihood objective.
Rarely seen or unseen probabilities are floored.

The crucial parameter γ for MCE training is adjusted
using the histogram method for d with η → ∞ as described
in [6]. We are also using the gradient normalization tech-
nique described there. The parameter η is adjusted in a way
that most of the time only the most competitive model con-
tributes to parameter optimization. Maximum Likelihood
trained models serve as starting point for MCE parameter
re-estimation. The number of MCE iterations was always
set to 6.

4.2. Performance Measurement

The first scenario considered here is classification where
one out of the set of investigated languages is the result of
the LID system. In this case we are using the LID Error
Rate (ER) in % as the performance measure. Note that the
LID Error Rate (ER) is most closely related to the objective
function for MLIDE HMM training as described above.

In a detection scenario the result of the LID system is
a set of measures (usually approximated a-posteriori proba-
bilities). In an extra processing step a decision for each lan-
guage whether the language is detected as spoken is taken.
This is done based on a threshold. Varying the threshold we
can get the Equal Error Rate (EER) in % where the false
acceptance rate is equal to the false rejection rate. Note
that this measure is not directly related to the objective of
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IDE as describe in this paper.

Results without Database-Mismatch

first series of experiments we evaluate different setups
he SpeechDat II fixed telephone network database. This
ns that different subsets of the same database were em-
ed for HMM training, ANN parameter optimization,
system evaluation. In this case we don’t have a database
match.

Although we do not optimize the language models with
scriminative training procedure we do consider them in
MLIDE HMM parameter optimization scheme. But we
e the choice to use the bigrams as in the LID system or
mploy zerograms which corresponds to not considering
language models in MLIDE HMM training.

Figure 2 shows convergence of MLIDE training of
Ms with bigrams models in training. Results are with
s but without ANN. Table 1 gives results for Maxi-

 0  1  2  3  4  5  6

Iteration index

LID error rate on training data

LID error rate on test data

re 2: Convergence of MLIDE training with bigrams,
out ANN, fixed network training and test data

Likelihood and Minimum Language Identification Er-
training of HMM mean vectors. For MLID we consider

cases: with or without language models in MLIDE
ing. First of all the use of bigram phoneme language
els and artificial neural network greatly improves the
r rates as well as the equal error rates. The improvement
he equal error rates by the ANN is enormous which can
xplained by the poor approximation of the a-posteriori
abilities through the simple score normalization.

It can be seen that in all cases MLIDE HMMs sig-
antly outperform ML HMM concerning the classifica-
error rates as well as concerning the equal error rates.
use of zerograms instead of bigrams (as used for LID)
LIDE parameter estimation degrades results without

N but when the ANN is in use the overall results are
similar.



HMM-Training LMs ANN ER EER

ML - - 14.6 23.4
ML - + 10.2 4.8
ML + - 10.0 26.7
ML + + 7.9 3.7

MLIDE using Bigrams - - 11.7 23.8
MLIDE using Bigrams + - 4.9 26.8
MLIDE using Bigrams + + 4.7 2.7
MLIDE using Zerogr. - - 7.6 23.5
MLIDE using Zerogr. + - 5.4 26.8
MLIDE using Zerogr. + + 4.8 2.6

Table 1: Comparison of HMM training criteria Maximum
Likelihood (ML) and Minimum Language Identification Er-
ror (MLIDE) with Bigrams or Zerograms, with / without
language models (LM) in LID, with / without Artificial
Neural Network (ANN), language Error Rates (ER) and
Equal Error Rates (EER) in % on fixed telephone test data

4.4. Results with Database-Mismatch

This section presents results of the system trained on fixed
network telephone speech (SpeechDat II) tested on mobile
network telephone speech (SpeechDat II Mobile). Because
of the GSM channel and the different environmental con-
ditions (e.g. car noise) we can speak of a severe database
mismatch in this case.

Table 2 shows results on the mobile test data featuring
4 languages. The setup is using the ANN and language
models. The error rates on the mobile data are higher than

HMM-Training ER EER

ML 19.5 12.0
MLIDE using Bigrams 13.2 8.4
MLIDE using Zerogr. 14.4 9.0

Table 2: Comparison of HMM training criteria Maxi-
mum Likelihood (ML) and Minimum Language Identifica-
tion Error (MLIDE) with Bigrams or Zerograms, with lan-
guage models (LM) in LID, with Artificial Neural Network
(ANN), language Error Rates (ER) and Equal Error Rates
(EER) in % on mobile telephone test data (database mis-
match)

those for fixed network test data although the number of lan-
guages is only 4 compared to 7. This might be caused by the
higher noise level in the mobile speech data and — maybe
more important — by the general database mismatch. Ob-
viously MLIDE HMM training can greatly improve classi-
fication results in spite of this mismatch problem.
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5. Conclusions and Future Work

have successfully applied Minimum Language Identi-
tion Error (MLIDE) training of Hidden Markov Model
n vectors based on the Minimum Classification Error
E) approach. We could show that for an experimen-

setup with large amount of training data it is possible
educe the language identification error rate by as much
0% relatively. Even given a severe database mismatch
een training and test the use of MLIDE parameter es-
tion for HMM mean vectors can heavily reduce error

s.
In our future work we are planning to optimize the
r components — phoneme bigram language models and

N parameters — with MLIDE objective.
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