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Abstract 

An acoustic model for a real-time continuous phoneme 
recognition system must exhibit the following desirable 
feature: an ability to minimize the recognition 
performance degradation while solving the model 
complexity problem to confine the delay to a minimum in 
recognition process. To cope with the challenges, we 
introduce the state-dependent Phonetic Tied-Mixture 
(PTM) model with Head-Body-Tail (HBT) structured 
HMM as an acoustic model optimization.  The proposed 
acoustic modeling method shows a significant 
improvement in recognition performance and becomes a 
solution to the sparse training data problem and the model 
complexity problem.  Moreover, defining the exceptional 
Gaussian mixtures in tying process achieves a drastic 
reduction in phoneme error rate compared to traditional 
state-dependent PTM method.  In this paper, we describe 
the new acoustic model optimization procedure and show 
the outstanding performance evaluation results for real-
time continuous phoneme recognition system.
Index Terms: acoustic modeling, state-dependent PTM 

1. Introduction 
Speech recognition technology can be employed in many 
useful applications as the principal human-machine 
interface.  Those applications may need just a simple 
recognizer for some interested vocabularies rather than a 
complex one, which contain infrequently used large 
vocabularies.  The acoustic model for the simple 
recognizer has relatively small complexity and needs a 
few storage memories in the application system.  For a 
large vocabulary tasks, however, the speech recognition 
system should guarantee a large sized and highly 
performing acoustic model for reliable recognition results.  
In the case of real-time phoneme recognition, it is 
desirable to realize a system with just a simple acoustic 
model though its covered vocabulary range is large.  To 
achieve this objective, many HMM-based or SVM-based 
acoustic modeling methods for phoneme recognition 
system have been investigated. There has been a number 
of research efforts conducted in the SVM-based methods 
for speech recognitions. Simple vowel classifications 
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g SVM by Clarkson [1], dynamic time alignment 
el method by Shimodaira [2], and SVM/HMM hybrid 

hod by Golowich [3] are some of the work done so far 
utilizing the SVM-based approach for speech 

gnition. HMM algorithm has often been used for such 
pproach. Using an algorithm for phoneme recognition 

ed on HMM, Tamura [4] tried to find an optimum 
neme sequence for visual speech parameter from 
tences in ML sense. Yamamoto [5] also proposed a 
el lip movement synthesis method of mapping input 
ech based on HMM based phoneme recognition.  In 
 paper, we design the acoustic model for phoneme 
gnition targeting a real time lip-synch system that 

vates 2-D avatar’s lip motion in synch with incoming 
ech utterance. To achieve the real-time continuous 
neme recognition (or classification), we employ the 
rnative state-dependent PTM (Phonetic Tied-Mixture) 
el with HBT (Head-Body-Tail) structured HMM.  
text independent (CI) model alone does not well 
esent continuously uttered phoneme sequences in all 
texts though its size is relatively small.  As a result, CI 
els do not achieve high recognition performance for 

tinuous phoneme recognition tasks.  On the other hand, 
text dependent (CD) models provide a more detailed 
cription of the acoustic units undergoing analysis.   

ever, the gain in the detailed acoustic models requires 
adequate amount of model complexity and memory 
.  This problem can be, in part, resolved by employing 
er tied-mixture (TM) continuous parameter, phonetic 
-mixture  (PTM), or subspace distribution clustering 
C) modeling [6][7][8].  These methods, however, 
ld not effectively represent several varying 
culations of continuously uttered phoneme sequences.  
 proposed alternative state-dependent PTM model 
 Head-Body-Tail structured HMM provides itself as a 
tion to finding reliable model parameter values with a 
 simple mixture clustering algorithm.  

he next section we first describe the proposed state-
endent PTM with Head-Body-Tail structured HMM.  
 then prescribe in Section 3, the optimizing method of 
e-dependent PTM with HBT structured HMM for 
tinuous phoneme recognition system.  In Section 4, we 
ent the representative experiments that show how 

September 17-21, Pittsburgh, Pennsylvania



effective the proposed state-dependent PTM with HBT 
structured HMM is, for optimized embedded speech 
recognition system.  Finally, concluding remarks are 
presented in Section 5. 

2.  State-dependent PTM with HBT structured HMM 
The semi-continuous or tied-mixture HMM, in general, 
has state output probabilities compromised between 
discrete and continuous distribution HMM’s. That is, the 
global codebook of the TM HMM, with Gaussian code-
words, is constructed by a mixture tying process, whose 
state output probability is the weighted sum of these code-
words.  Eq. (1) shows the output probability of state S for 
input vector tx .

L
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where L is the size of the codebook, bS(l) is the weight for 
each codebook index l, and G(•) denotes Gaussian 
distribution. 
The continuous distribution HMM (CDHMM) has a 
Gaussian mixture and corresponding weights for each 
state. The tied-mixture modeling method is used to make 
one or more codebooks for tying Gaussians from the 
continuous density Gaussian mixture.  Fig. 1 shows the 
concept of tied-mixture (TM) modeling. 

2.1 State-dependent PTM modeling method 
The context dependent HMM must share their parameters 
such as the state distributions for reliable parameter 
estimation. The generation of the state-dependent PTM 
model is based on both the state tying and mixture tying 
for an efficient complexity reduction of triphone models 
[7].  Compared to the pure TM or PTM models, the state-
dependent PTM model represent the state identity using 
small-sized several state-dependent Gaussian codebooks. 
The state-dependent PTM model uses a small set of 
parameters to discard the overlapping mixture 
distributions for robust model estimation.   

Figure 1: Concept of tied-mixture modeling method
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order to deal with the overlapping Gaussian 
ponents among the tied states, we use the Gaussian 
tering based on the Bhattachyaryya distance measure.  
en two Gaussian components, ),( 111 μG  and 

), 22μ , the distance measure is represented as 
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a result, the state-dependent PTM model shares some 
e output distributions while its state shares common 
ssians in the state-dependent codebook.  This state-
endent PTM model has properties of both the state-
tered and the tied-mixture models.  Additionally, in 
state clustering process, the state-dependent PTM 
eling method could generate decision-trees for unseen 

texts. Fig. 2 shows the structure of state-dependent 
 modeling method. 

HBT structured HMM for phoneme recognition 
articulation effects for several contexts can be 
esented by context dependent HMM.  One such model 

 referred to as HBT structured HMM [9], has been 
d effectively in connected digit recognition. HBT 
els are a special case of subword modeling that 
esents the beginning, middle, and end of a word. The 
ter of each phoneme, modeled by the body model, is a 
text independent unit. Context dependency 
rmation is incorporated in the head and tail models. 

. 3 shows an example of HBT structured HMM for ‘E’, 
, and ‘Oh’ phoneme sequence.. 

Figure 2: Structure of state-dependent PTM model
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Figure 3: Example of HBT model structured HMM for ‘E’, 
‘A’, and ‘Oh’ phoneme sequence

3. Optimizing a new state-dependent PTM with HBT 
structured HMM

A new state-dependent PTM with HBT structured HMM 
has various optimizing targets.  The objectives are: to 
enhance the representation ability of context dependency 
information and to reduce the redundant Gaussians in the 
model.  In this section, we introduce our methods for 
optimizing the new model. 

3.1 Exceptional Gaussians in the mixture tying process 
In the HBT structured HMM concept, the context 
dependency information, as mentioned in Section 2, is 
incorporated in the head and tail model.  Moreover, the 
first state of head model and the last state of tail model has 
the very important transition information of co-
articulation effects due to prior and posterior phonemes, 
respectively.  In this point of view, we set the Gaussian 
set of the first states of head models and the last states of 
tail models as the exceptional Gaussians in the mixture 
tying process.   

3.2 Variable size of state-dependent codebook
In the state-dependent PTM model, unique size of state-
dependent codebook leads to the error between the 
likelihood of original and tied Gaussian mixtures for some 
models needing highly varying phonemes.  On the other 
hand, too many small weighted mixtures in the codebook 
increase the model complexity.  To cope with that, we 
adjust the codebook size of each state to minimize the 
likelihood lost in the Gaussian merging process.  Given 
two Gaussian components, ),( 111 μG  and ),( 222 μG
with their relevant occurrence counts in the training set 1c
and 1c , the merging process based on the likelihood loss 
computation [10] is represented as follows. 
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21 ccc     (3) 
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 likelihood loss due to the merge of ),( 111 μG  and 
), 22μ  is; 

2
logloglog

)( 2211
21

ccc
GG .  (6) 

 codebook size to minimize the likelihood loss can be 
rmined by checking the accumulated value of Eq. (6). 

Common methods for optimizing TM models [11] 
the model training procedure, we define the state 
ght lower boundary with 2x10-5.  The lower boundary 
ents the state weights from falling into zero.  In our 
el, the largest part of a model size is the set of state 

ght arrays.  The data type of state weight arrays is 
ting point. Consequently, a 4-byte memory is needed 
weight value.  However, if we quantize the weights 
 256 levels, each weight requires only 1-byte memory. 
reover, the state level Gaussian selection algorithm 
s a sub-set of pre-computed Gaussians for calculating 
h output probability.  The Gaussian selection criterion 
use is the likelihood difference of each Gaussian to the 
imum likelihood valued Gaussian. 

4. Experiments
this section, we evaluate the effectiveness of the 
posed acoustic model implementation for continuous 
neme recognition system using the state-dependent 

 with HBT structured HMM with optimization.   

Comparison of the simple CI and HBT models 
this experiment, we compare the recognition 
ormance between CI and HBT models that are 
tinuous distributed HMM.  The simple CI model has 9 
es and the HBT model has totally 9 states (3 states per 
d, Body, Tail). Both models for comparison have 8-
ture per state.  The feature we used is 39th order 
CC’s constructed with 12th order MFCC’s, log energy, 
r delta, and delta-delta values.   
this test, we used a set of single vowel classes 
edded in 452 phonetically balanced Korean words set 
 as the training model and test DB in order to 

plifying the process.  We merged Diphthongs into 
esponding single vowels to apply our model to real-
 lip-synch system.  For speaker independent tasks, we 
luded the test speaker’s utterances from those in 



training.  The total number of Gaussians for CI and HBT 
model is 552 and 8,616, respectively.  Table 1 shows both 
recognition performances of each model.  In this 
experiment, both phone error rate (PER) and sentence 
error rate (SER) of CI model are about 2 times larger than 
those of HBT model.  This experimental result shows that 
the context dependency information in head and tail 
model could lead drastic improvement in terms of 
phoneme recognition performance. 

4.2 Performance evaluation of the state-dependent 
PTM with HBT structured HMM 
In this test, we evaluated the performance of the state-
dependent PTM with HBT structured HMM.  Our set up 
of this test is same with above experiment.  We, firstly, 
constructed continuous distributed HBT model as above 
test. Secondly, we developed the traditional state-
dependent PTM model in HBT structured HMM. The 
total number of Gaussians in the model is 2,064.  And 
finally we constructed state-dependent PTM model having 
the exceptional Gaussians in the mixture tying process.  
The total number of Gaussians in this case is 2,008.  In 
this experiment, we set the number of Gaussians to 32 per 
state-dependent codebook, uniquely. As shown in Table 2, 
the traditional state-dependent PTM method could not 
reflect context dependency information of head and tail 
models, effectively. In other words, the mixture tying 
process of head and tail model could degrade the 
advantage of the HBT model in the aspect of context 
dependent modeling for co-articulation effect. 
In the performance evaluation of variable state-dependent 
PTM codebook size, the average codebook size of our 
model is 32. In this experiment, as shown Table 3, the 
phoneme recognition performance is slightly increased 
though the total number of Gaussians is same with the 
fixed codebook sized model. 

Table 1: Performance evaluations of CI and HBT model 

 CI model HBT model 
PER  22.54% 9.58% 
SER 77.43% 40.09% 

Table 2: Performance evaluations of state-dependent PTM 
with HBT structured HMM 

Conventional
state-dependent PTM  

with HBT HMM 

New state-dependent 
PTM with HBT HMM
(exceptional Gaussian)

PER 19.74% 9.21% 
SER 53.63% 39.73% 

Table 3: Performance evaluations of variable size of state-
dependent codebook in HBT structured HMM 

 Fixed codebook size Variable codebook size
PER  9.21% 9.11% 
SER  39.73% 39.61% 
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5. Conclusions 
his paper, we implemented an acoustic model based on 
tate-dependent PTM with HBT structured HMM, 
eting for real-time continuous phoneme recognition 
licable to real-time lip-synch system. Moreover, we 
stigated candidate optimization techniques, such as 
ture tying process with exceptional Gaussians in head 
 tail model, variable state-dependent PTM codebook 
d method, and others suitable for tied-mixture model.  
se optimization schemes made the proposed model 
e effective and reliable in the continuous phoneme 

uence recognition. Experimental results showed that 
new state-dependent PTM with HBT structured HMM 
 be reliably applied to real-time lip-synch system or 
ple vowel segmentation system.  
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