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Abstract

An acoustic model for a real-time continuous phoneme
recognition system must exhibit the following desirable
feature: an ability to minimize the recognition
performance degradation while solving the model
complexity problem to confine the delay to a minimum in
recognition process. To cope with the challenges, we
introduce the state-dependent Phonetic Tied-Mixture
(PTM) model with Head-Body-Tail (HBT) structured
HMM as an acoustic model optimization. The proposed
acoustic modeling method shows a significant
improvement in recognition performance and becomes a
solution to the sparse training data problem and the model
complexity problem. Moreover, defining the exceptional
Gaussian mixtures in tying process achieves a drastic
reduction in phoneme error rate compared to traditional
state-dependent PTM method. In this paper, we describe
the new acoustic model optimization procedure and show
the outstanding performance evaluation results for real-
time continuous phoneme recognition system.

Index Terms: acoustic modeling, state-dependent PTM

1. Introduction
Speech recognition technology can be employed in many
useful applications as the principal human-machine
interface. Those applications may need just a simple
recognizer for some interested vocabularies rather than a
complex one, which contain infrequently used large
vocabularies.  The acoustic model for the simple
recognizer has relatively small complexity and needs a
few storage memories in the application system. For a
large vocabulary tasks, however, the speech recognition
system should guarantee a large sized and highly
performing acoustic model for reliable recognition results.
In the case of real-time phoneme recognition, it is
desirable to realize a system with just a simple acoustic
model though its covered vocabulary range is large. To
achieve this objective, many HMM-based or SVM-based
acoustic modeling methods for phoneme recognition
system have been investigated. There has been a number
of research efforts conducted in the SVM-based methods
for speech recognitions. Simple vowel classifications
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using SVM by Clarkson [1], dynamic time alignment
kernel method by Shimodaira [2], and SVM/HMM hybrid
method by Golowich [3] are some of the work done so far
for utilizing the SVM-based approach for speech
recognition. HMM algorithm has often been used for such
an approach. Using an algorithm for phoneme recognition
based on HMM, Tamura [4] tried to find an optimum
phoneme sequence for visual speech parameter from
sentences in ML sense. Yamamoto [5] also proposed a
novel lip movement synthesis method of mapping input
speech based on HMM based phoneme recognition. In
this paper, we design the acoustic model for phoneme
recognition targeting a real time lip-synch system that
activates 2-D avatar’s lip motion in synch with incoming
speech utterance. To achieve the real-time continuous
phoneme recognition (or classification), we employ the
alternative state-dependent PTM (Phonetic Tied-Mixture)
model with HBT (Head-Body-Tail) structured HMM.
Context independent (CI) model alone does not well
represent continuously uttered phoneme sequences in all
contexts though its size is relatively small. As a result, CI
models do not achieve high recognition performance for
continuous phoneme recognition tasks. On the other hand,
context dependent (CD) models provide a more detailed
description of the acoustic units undergoing analysis.
However, the gain in the detailed acoustic models requires
an adequate amount of model complexity and memory
size. This problem can be, in part, resolved by employing
either tied-mixture (TM) continuous parameter, phonetic
tied-mixture (PTM), or subspace distribution clustering
(SDC) modeling [6][7][8]. These methods, however,
could not effectively represent several varying
articulations of continuously uttered phoneme sequences.
The proposed alternative state-dependent PTM model
with Head-Body-Tail structured HMM provides itself as a
solution to finding reliable model parameter values with a
very simple mixture clustering algorithm.

In the next section we first describe the proposed state-
dependent PTM with Head-Body-Tail structured HMM.
We then prescribe in Section 3, the optimizing method of
state-dependent PTM with HBT structured HMM for
continuous phoneme recognition system. In Section 4, we
present the representative experiments that show how
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effective the proposed state-dependent PTM with HBT
structured HMM is, for optimized embedded speech
recognition system. Finally, concluding remarks are
presented in Section 5.

2. State-dependent PTM with HBT structured HMM
The semi-continuous or tied-mixture HMM, in general,
has state output probabilities compromised between
discrete and continuous distribution HMM’s. That is, the
global codebook of the TM HMM, with Gaussian code-
words, is constructed by a mixture tying process, whose
state output probability is the weighted sum of these code-
words. Eq. (1) shows the output probability of state S for

input vector X, .

by(x,)= D bs(DG(x,5p,,6))

where L is the size of the codebook, bs(/) is the weight for
each codebook index /, and G(¢) denotes Gaussian
distribution.

The continuous distribution HMM (CDHMM) has a
Gaussian mixture and corresponding weights for each
state. The tied-mixture modeling method is used to make
one or more codebooks for tying Gaussians from the
continuous density Gaussian mixture. Fig. 1 shows the
concept of tied-mixture (TM) modeling.

(1)

2.1 State-dependent PTM modeling method

The context dependent HMM must share their parameters
such as the state distributions for reliable parameter
estimation. The generation of the state-dependent PTM
model is based on both the state tying and mixture tying
for an efficient complexity reduction of triphone models
[7]. Compared to the pure TM or PTM models, the state-
dependent PTM model represent the state identity using
small-sized several state-dependent Gaussian codebooks.
The state-dependent PTM model uses a small set of
parameters to discard the overlapping mixture
distributions for robust model estimation.
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Figure 1: Concept of tied-mixture modeling method
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In order to deal with the overlapping Gaussian
components among the tied states, we use the Gaussian
clustering based on the Bhattachyaryya distance measure.

Given two Gaussian components, G, (n,,5,) and
G,(n,,s,), the distance measure is represented as
1 G,—0,
D(GI’GZ) = g(lh _uz)T(f) 1(111 _uz)
2
1 (6, +6,)/2]
+5 1 1/2
o, o,

As a result, the state-dependent PTM model shares some
state output distributions while its state shares common
Gaussians in the state-dependent codebook. This state-
dependent PTM model has properties of both the state-
clustered and the tied-mixture models. Additionally, in
the state clustering process, the state-dependent PTM
modeling method could generate decision-trees for unseen
contexts. Fig. 2 shows the structure of state-dependent
PTM modeling method.

2.2 HBT structured HMM for phoneme recognition
Co-articulation effects for several contexts can be
represented by context dependent HMM. One such model
set, referred to as HBT structured HMM [9], has been
used effectively in connected digit recognition. HBT
models are a special case of subword modeling that
represents the beginning, middle, and end of a word. The
center of each phoneme, modeled by the body model, is a
context independent unit. Context dependency
information is incorporated in the head and tail models.
Fig. 3 shows an example of HBT structured HMM for ‘E’,
‘A’, and ‘Oh’ phoneme sequence..
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Figure 2: Structure of state-dependent PTM model
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Figure 3: Example of HBT model structured HMM for ‘E’,
‘A’, and ‘Oh’ phoneme sequence
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3. Optimizing a new state-dependent PTM with HBT
structured HMM

A new state-dependent PTM with HBT structured HMM
has various optimizing targets. The objectives are: to
enhance the representation ability of context dependency
information and to reduce the redundant Gaussians in the
model. In this section, we introduce our methods for
optimizing the new model.

3.1 Exceptional Gaussians in the mixture tying process
In the HBT structured HMM concept, the context
dependency information, as mentioned in Section 2, is
incorporated in the head and tail model. Moreover, the
first state of head model and the last state of tail model has
the very important transition information of co-
articulation effects due to prior and posterior phonemes,
respectively. In this point of view, we set the Gaussian
set of the first states of head models and the last states of
tail models as the exceptional Gaussians in the mixture
tying process.

3.2 Variable size of state-dependent codebook

In the state-dependent PTM model, unique size of state-
dependent codebook leads to the error between the
likelihood of original and tied Gaussian mixtures for some
models needing highly varying phonemes. On the other
hand, too many small weighted mixtures in the codebook
increase the model complexity. To cope with that, we
adjust the codebook size of each state to minimize the
likelihood lost in the Gaussian merging process. Given
two Gaussian components, G,(p,,6,) and G,(u,,s,)

with their relevant occurrence counts in the training set ¢,
and ¢, , the merging process based on the likelihood loss
computation [10] is represented as follows.

1585

c=c +c, 3)
+
p= Gny TR, )
C
6="[o, +(n, — ), -]
¢ 5)

¢ T
il CERA R DI CE DI
The likelihood loss due to the merge of G, (u,,s,) and
G,(n,,0,) 1s;

c10g|6| —-q 10g|61| —-c, 10g|62|
. (6)
2
The codebook size to minimize the likelihood loss can be
determined by checking the accumulated value of Eq. (6).

A(GI + Gz) =

3.3 Common methods for optimizing TM models [11]
In the model training procedure, we define the state
weight lower boundary with 2x10°. The lower boundary
prevents the state weights from falling into zero. In our
model, the largest part of a model size is the set of state
weight arrays. The data type of state weight arrays is
floating point. Consequently, a 4-byte memory is needed
per weight value. However, if we quantize the weights
into 256 levels, each weight requires only 1-byte memory.
Moreover, the state level Gaussian selection algorithm
uses a sub-set of pre-computed Gaussians for calculating
each output probability. The Gaussian selection criterion
we use is the likelihood difference of each Gaussian to the
maximum likelihood valued Gaussian.

4. Experiments
In this section, we evaluate the effectiveness of the
proposed acoustic model implementation for continuous
phoneme recognition system using the state-dependent
PTM with HBT structured HMM with optimization.

4.1 Comparison of the simple CI and HBT models

In this experiment, we compare the recognition
performance between CI and HBT models that are
continuous distributed HMM. The simple CI model has 9
states and the HBT model has totally 9 states (3 states per
Head, Body, Tail). Both models for comparison have 8-
mixture per state. The feature we used is 39" order
MFCC’s constructed with 12" order MFCC’s, log energy,
their delta, and delta-delta values.

In this test, we used a set of single vowel classes
embedded in 452 phonetically balanced Korean words set
both as the training model and test DB in order to
simplifying the process. We merged Diphthongs into
corresponding single vowels to apply our model to real-
time lip-synch system. For speaker independent tasks, we
precluded the test speaker’s utterances from those in
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training. The total number of Gaussians for CI and HBT
model is 552 and 8,616, respectively. Table 1 shows both
recognition performances of each model. In this
experiment, both phone error rate (PER) and sentence
error rate (SER) of CI model are about 2 times larger than
those of HBT model. This experimental result shows that
the context dependency information in head and tail
model could lead drastic improvement in terms of
phoneme recognition performance.

4.2 Performance evaluation of the state-dependent
PTM with HBT structured HMM

In this test, we evaluated the performance of the state-
dependent PTM with HBT structured HMM. Our set up
of this test is same with above experiment. We, firstly,
constructed continuous distributed HBT model as above
test. Secondly, we developed the traditional state-
dependent PTM model in HBT structured HMM. The
total number of Gaussians in the model is 2,064. And
finally we constructed state-dependent PTM model having
the exceptional Gaussians in the mixture tying process.
The total number of Gaussians in this case is 2,008. In
this experiment, we set the number of Gaussians to 32 per
state-dependent codebook, uniquely. As shown in Table 2,
the traditional state-dependent PTM method could not
reflect context dependency information of head and tail
models, effectively. In other words, the mixture tying
process of head and tail model could degrade the
advantage of the HBT model in the aspect of context
dependent modeling for co-articulation effect.

In the performance evaluation of variable state-dependent
PTM codebook size, the average codebook size of our
model is 32. In this experiment, as shown Table 3, the
phoneme recognition performance is slightly increased
though the total number of Gaussians is same with the
fixed codebook sized model.

Table 1: Performance evaluations of CI and HBT model

CI model HBT model
PER 22.54% 9.58%
SER 77.43% 40.09%
Table 2: Performance evaluations of state-dependent PTM
with HBT structured HMM
Conventional New state-dependent
state-dependent PTM PTM with HBT HMM
with HBT HMM (exceptional Gaussian)
PER 19.74% 9.21%
SER 53.63% 39.73%

Table 3: Performance evaluations of variable size of state-
dependent codebook in HBT structured HMM

Variable codebook size
9.11%
39.61%

Fixed codebook size
PER 9.21%
SER 39.73%
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5. Conclusions

In this paper, we implemented an acoustic model based on
a state-dependent PTM with HBT structured HMM,
targeting for real-time continuous phoneme recognition
applicable to real-time lip-synch system. Moreover, we
investigated candidate optimization techniques, such as
mixture tying process with exceptional Gaussians in head
and tail model, variable state-dependent PTM codebook
sized method, and others suitable for tied-mixture model.
These optimization schemes made the proposed model
more effective and reliable in the continuous phoneme
sequence recognition. Experimental results showed that
the new state-dependent PTM with HBT structured HMM
can be reliably applied to real-time lip-synch system or
simple vowel segmentation system.
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