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Abstract
In this paper, we investigate the degradation of speaker identifica-

tion performance due to speech coding algorithms used in digital

telephone networks, cellular telephony, and voice over IP. By an-

alyzing the difference between front-end feature vectors derived

from coded and uncoded speech in terms of spectral distortion, we

are able to quantify this coding degradation. This leads to two

novel methods for distortion compensation: codebook and LPC

compensation. Both are shown to significantly reduce front-end

mismatch, with the second approach providing the most encourag-

ing results. Full experiments using a GMM-UBM speaker ID sys-

tem confirm the usefulness of both the front-end distortion analysis

and the LPC compensation technique.

Index Terms: speech coding, speaker identification.

1. Introduction
With the widespread use of digital speech communication, for

example in cellular telephony and voice over IP (VoIP), speech

coding has become commonplace. The high user acceptance of

modern speech coding algorithms results from their extensive op-

timization to minimize perceived distortion in listening tests; how-

ever, these optimizations may not be appropriate for systems rely-

ing on automated analysis, such as speaker identification. In this

work, we first examine the impact of widely-used speech coding

standards on the mel-cepstral filterbank front-end commonly used

in speech recognition or speaker ID. Based on this analysis, we

then propose and test two methods of compensating for speech

coder distortion: codebook and LPC compensation. Finally, we

perform speaker ID experiments confirming the improved perfor-

mance of the LPC compensation technique.

Previous work on speaker ID of coded speech has considered

using featured vectors derived from the speech coding bitstream or

the decoded output speech [1, 2, 3]. In particular [1] concluded

that performance was better using the coded speech for feature

vector analysis. These results were extended in [4], which quanti-

fied the speaker ID degradation for a number of speech coders and

showed a slight loss in performance for matched training and test

conditions, becoming more significant for mismatched conditions.

In this work, we continue to use the coded speech for feature vec-

tor analysis, both for performance reasons and also for the added

convenience of using the same speaker ID modeling approach for
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coded and uncoded speech. However, our goal is to develop

eform compensation techniques to improve the speaker ID per-

ance.

. Impact of Speech Coding on Speaker ID
Front-End

set up an experimental framework to directly measure speaker

front-end distortion from speech coding. We ran the speaker

front-end on both uncoded and coded speech, and computed

Spectral Distortion (SD): the RMS error between the two sets

g filterbank energies. The front-end [5] uses a 19-dimensional

-cepstral vector extracted every 10 ms and bandlimited to 300-

8 Hz. Delta cepstra are computed using a 5 frame span and

ended to the cepstral vector to produce a 38-dimensional fea-

vector. An adaptive energy-based speech detector discards

-energy vectors.

For initial experiments, we used the testing partition of the

sentences of the TIMIT 1 database, resulting in approximately

,000 test frames. The speech coders tested cover a wide range

it rates from 64 to 5.3 kb/s, including:

• 64 kb/s ITU G.711 mu-law PCM

• 32 kb/s ITU G.726 ADPCM

• 12.2 kb/s 3GPP GSM-AMR (same as GSM-EFR)

• 6.7 kb/s GSM-AMR

• 5.3 kb/s ITU G.723.1

first two of these are traditional speech waveform coders: 64

G.711 Pulse-coded Modulation (PCM) and 32 kb/s G.726

ptive Differential PCM (ADPCM). These are toll-quality stan-

s defined by the International Telecommunications Union

) and widely deployed throughout the conventional telephone

ork. The next three coders are based on Code Excited Lin-

Prediction (CELP), a more sophisticated speech-specific wave-

coding technology providing near-toll quality at medium bit

s. Two of these are widely used in the cellular telephony sys-

s: 12.2 kb/s GSM-EFR for worldwide TDMA systems and 6.7

GSM-AMR for Japanese TDMA and newer GSM systems.

lower rate 5.3 kb/s G.723.1 CELP coder is used in VoIP ap-

ations.

In Fig. 1, we see that the RMS error varies between 0.5 and

dB, with increasing error as the speech coding bit rate de-

ses. In spectral quantization for speech coding, the standard

of thumb is that 1 dB of spectral distortion is transparent to a
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Figure 1: Filterbank distortion vs. speech coder bitrate.

human listener [6]. Notice that G.711 is the only coder to achieve

this distortion threshold.

3. Coded Speech Compensation Techniques
Our goal is to generate a speech coder postprocessor to optimally

reduce the speaker recognition front-end mismatch between coded

and uncoded speech, using as much information from the speech

coder as possible, not just the decoded output speech, to improve

the compensation performance. This postprocessor should clearly

help to compensate for the speech coder distortion in mismatched

training and test conditions, and we hope that by exploiting inter-

nal coder information we can get improvement even for matched

conditions.

At first glance it might seem that a well-designed speech de-

coder cannot be improved. However, we see two reasons for op-

timism. First, in this application we can use additional delay and

lookahead of decoded speech; traditional speech decoders do not

have this luxury. More importantly, we are interested in a differ-

ent goal: to improve the speaker ID performance rather than the

perceived speech quality. In particular, we do not need to recover

the entire speech waveform (which is clearly not possible since

information has been lost), but only the filterbank spectral magni-

tudes for the front-end. In theory, uncorrelated quantization noise

should simply be additive in the power spectral domain, so that the

spectral distortion due to coding could in fact be deterministic and

removable.

3.1. Codebook Compensation

If the spectral distortion introduced by speech coding is deter-

ministic, i.e. if a given coded spectrum always corresponds to a

given uncoded spectrum, then it can be learned from a training

set by an algorithm such as generalized vector quantization (also

called codebook mapping) [7]. In this approach, the training set

of coded speech filterbank vectors is partitioned into regions, and

for each region the optimal minimum-mean-square-error compen-
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re 2: Codebook compensation performance for 6.7 kb/s GSM-

R speech coder.

on vector is computed as the mean difference between uncoded

coded filterbank vectors for this region. While it is tempting to

each coded vector directly to a corresponding uncoded vec-

we achieved better performance by learning the error for each

ition, since then the space of possible output vectors is continu-

rather than discrete. Codebook mapping assumes no particular

tional relationship between uncoded and coded speech, and in

limit of large training set and codebook sizes provides theoret-

ly optimal performance.

To test this method, compensation codebooks were trained

r the standard training partition of the ’si’ sentences in TIMIT.

cessing of uncoded and coded speech files was the same as

ribed above; this training set contains approximately 340,000

-silent frames. Fig. 2 shows the performance of this method for

6.7 kb/s GSM-AMR coder, as a function of increasing code-

k size. Note that even a 0 bit codebook provides improvement

r the uncompensated case; this is simply compensation of the

erence in mean feature vector. Also, for large codebooks the

radation in performance from the training data to the indepen-

t test set is quite significant, indicating that the training data

not sufficient for this codebook size or that the training algo-

m is not sufficiently robust. A codebook size of 10 bits (1024

tors) provides a reasonable performance/complexity tradeoff.

Therefore, 10-bit codebooks were trained for all speech coders

d in the previous section. Test set results for the coders of pri-

y interest (5.3 - 12.2 kb/s) are shown in Fig. 3 (labeled as “CB

4”), along with the uncompensated results (“None”). Code-

k compensation provides noticeable performance improve-

t for these coders, as well as for 32 kb/s G.726, but not for

b/s G.711.

LPC Compensation

ost medium and low bit-rate speech coders, the transmitted

tream contains a representation of the original speech spectrum

g some form of linear prediction coefficients (LPC). Since the



Figure 3: SD performance of compensation techniques vs. speech

coder bitrate. Techniques include baseline (None), codebook com-

pensation (CB 1024), ideal LPC compensation (LPC comp), quan-

tized LPC compensation (QLPC comp), quantized LPC + code-

book compensation (QLPC+CB).

decoder has access to this information directly, it could be used in

the compensation process. Earlier work [1] has shown that per-

forming speaker ID using the LPC spectrum directly does not im-

prove performance because it contains no excitation information.

However, we can assume that the transmitted LPC represents the

correct (undistorted) spectral envelope for the synthesized speech,

and postfilter the output appropriately. The steps involved in this

process are:

• Compute the LPC of the synthesized speech.

• Inverse filter the synthesized speech with this filter to re-

move the distorted spectral envelope.

• Perform synthesis filtering with the transmitted LPC of the

original speech to restore the correct spectral envelope.

To get an initial feel for the potential of this approach, we

used a separate LPC analysis of the uncoded speech for compen-

sation. While this would not be possible in practice since only

the quantized LPC would be available, it does provide an upper

performance bound. As shown by the curve labeled “LPC comp”

in Fig. 3, this technique provides significantly more improvement

than the codebook mapping approach for low bit rates, since it ex-

ploits an additional information source.

Based on these encouraging results, we modified the software

of one speech coder to correctly implement this compensation us-

ing the quantized LPC from the received bitstream. This requires

an additional buffering delay of the synthesized speech for the

lookahead window of the LPC analysis, since care must be taken

to use the same analysis process and window position for this anal-

ysis as was used by the encoder. We chose to use the GSM-AMR

coder software so that experiments could be run at multiple rates

(6.7 and 12.2 kb/s). These results, labeled “ QLPC comp” in Fig. 3,

confirm that even with LPC quantization this approach provides

significant performance improvement for both coders.
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Combination

e both codebook mapping and LPC compensation provide

ormance improvement, it is possible that combining the two

provide even better performance. We have tested this ap-

ch, where the modified speech coder software described in

previous section is used for processing, and then compen-

on codebooks are trained based on this version of the coded

ch. Unfortunately, Fig. 3 shows that this provides negligible

her improvement. Apparently, the LPC compensation already

loits the information available to the codebook mapping pro-

. Therefore, we have concluded that the LPC compensation

nique provides the best front-end distortion compensation per-

ance.

Speaker ID Performance Characterization
and Improvement

ed on these encouraging results for front-end distortion, we

e performed full Speaker ID experiments.

Speaker ID System

use the MIT/LL Gaussian mixture model with universal back-

nd model (GMM-UBM) speaker recognition system [5]. This

em is a likelihood ratio detector with target and alternative

ability distributions modeled by GMM’s. The UBM is used

he alternative hypothesis model, and from this, target models

derived using Bayesian adaptation.

For these experiments, we use a different partitioning of

IT than in our earlier experiments, since we now need train-

and test utterances from the same speakers which are not avail-

with the standard test/train partition. For training each target

ker model, we use two sentences from the ’sa’ portion of the

us, three sentences from the ’si’, and three from the ’sx’, for

tal of eight sentences. For test, we use two different sentences

the ’sx’ portion. There are a total of 462 speakers, 136 fe-

e and 326 male. Each test sentence is scored using all of the

ker models. To test the impact of speech coder distortion on

ker ID performance, we train all models on uncoded speech

test using utterances processed by the speech coder under test.

ile this is not the only possible testing configuration, it gives a

onable and consistent performance measure.

The UBM is a 2048 mixture gender-independent GMM,

ed from ten sentences (two from ’sa’, three from ’si’, and five

’sx’) from each of 168 speakers in the standard test parti-

of TIMIT; these speaker are all different than the 462 target

kers. The target speaker models are derived from adapting

Gaussian mean vectors only over the eight target training sen-

es.

Baseline Results

t, we test the effect of all speech coders on our baseline system.

ults for Equal Error Rate (EER), where probabilities and costs

iss and false alarm are equal, are shown in Fig. 4. The result-

curve of distortion vs. speech coder bit rate shows minimal

act at high bit rates vs. the uncoded baseline, but a significant

ormance decrease for lower rates. This is consistent with the

ectation that toll-quality speech coders, which are nearly trans-

nt to human listeners, are also nearly transparent to the speaker



Figure 4: Speaker ID EER performance vs. speech coder bit rate.

ID system. Note also that the performance is more a function of

bit rate than type of coder; for example, the 12.2 kb/s GSM-EFR

CELP coder has similar performance to the 32 kb/s ADPCM wave-

form coder.

In comparison to the filter bank Spectral Distortion results

from Fig. 3, this rate distortion curve is much flatter at high rates,

as performance is limited by the minimum error rate achievable for

this problem even without speech coding distortion (labeled “un-

coded”) . This implies that the simpler SD measure can be used

to predict speaker ID performance degradation due to speech cod-

ing, but there is a non-linear relationship that must be considered

as well. SD less than 1 dB has no effect, up to 2 dB has minimal

impact, and 3 dB and greater is significant.

4.3. Performance with Coded Speech Compensation

Since the LPC compensation technique appears to be most promis-

ing, we have tested it’s impact on actual speaker ID performance.

For the GMM speaker ID system, we achieve significant perfor-

mance improvement from the LPC compensation technique, as

shown in Fig. 5. While again the ideal (unquantized) LPC com-

pensation provides the largest improvement, the real LPC com-

pensation method is also very effective. The GSM-AMR system

using quantized LPC parameters from the bitstream brings the per-

formance of the 6.7 kb/s coder up to the equivalent of about 9 kb/s.

Comparing these results to Fig. 3 again confirms the usefulness of

the SD metric in predicting speaker ID performance.

5. Conclusion
We have developed a new method for reducing the degradation of

speech coding on speaker ID performance. Experiments using the

TIMIT corpus have demonstrated reduced speaker ID error rate

by compensating the decoded speech with the LPC parameters de-

rived from the speech coder bitstream. An additional advantage

of this compensation method is that it is completely transparent to

the speaker ID system, since this new LPC postfilter can readily be
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re 5: Speaker ID EER improvement with compensation meth-

.

rporated inside the speech decoder.
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