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Abstract

TC-STAR is an European Union funded speech to speech trans-
lation project to transcribe, translate and synthesize European Par-
liamentary Plenary Speeches (EPPS). This paper describes IBM’s
English and Spanish speech recognition systems submitted to the
TC-STAR 2006 Evaluation. The technical advances in this submis-
sion include two different algorithms for automatic segmentation and
speaker clustering of the input audio; a system architecture that is
based on cross-adaptation across these two segmentation schemes and
system combination through generation of an ensemble of systems us-
ing randomized decision tree state-tying; automatic punctuation of the
speech recognition output; and the incorporation of an additional 35
hours of in-domain EPPS acoustic training data. These advances re-
duced the error rate by 30% relative over the best-performing system
in the TC-STAR 2005 Evaluation on the 2006 English development
test set, and produced one of the best performing systems on the 2006
evaluation in English with a word error rate of 8.3%.
Index Terms: speech recognition, automatic segmentation, cross-
adaptation, randomized decision trees, TC-STAR.

1. Introduction
The TC-STAR (Technology and Corpora for Speech to Speech Trans-
lation) project financed by the European Commission within the Sixth
framework Program is a long-term effort to advance research in
speech to speech translation technologies1. The primary goal of the
TC-STAR project is to produce an end-to-end system in English and
Spanish that accepts parliamentary speeches in one language, tran-
scribes, translates and synthesizes them into another language, while
significantly reducing the gap between the performance of a human
(interpreter) and a machine. To support this goal, the performance
of each component technology, namely, speech recognition (ASR),
machine translation (MT) and text-to-speech (TTS) is optimized to
produce the best output at their respective stages. The 2006 Evalua-
tion was open to external participants as well as the TC-STAR partner
sites [12].

The EPPS corpus comprises of over 700 politicians discussing
current affairs during several public sessions of the European Parlia-
ment in multiple languages and the minutes of these sessions edited by
the European parliament also known as the Final Text Editions. In the
2006 evaluation, the training, development and evaluation data com-
prised of recordings made between April 1996 and September 2005.
Within the TC-STAR project, the evaluation is done under three dif-
ferent conditions:

• public, which allows the use of any data that is publicly avail-
able, such as Broadcast news and web data in addition to the
EPPS acoustic training data and Final text Editions;

• restricted, which allows the use of EPPS data only; and

1Project No. FP6-506738

This
restr
tion

the t
train
syste
els;
scrib

The
arou
adap
secti
test

2.1.

The
prete
ers
and
step
dio
of th

2T

INTERSPEECH 2006 - ICSLP

1225
or European Parliamentary Speeches

M. Westphal. H. Schulz, A. Soneiro

EMEA Voice Technology Development
IBM Germany

• open, which allows the use of publicly available and any in-
house material in addition to the EPPS data.

paper describes the IBM system submitted under the public and
icted conditions. The key design characteristics for both evalua-
conditions include:

• An architecture that uses two different speaker segmentation
and clustering schemes and uses the output of the system us-
ing one scheme to cross adapt the same models to the second
scheme;

• System combination via ROVER of multiple ASR systems
built using a randomized decision-tree growing procedure [1]
and cross adapted across two speaker segmentation schemes2;

• A basic set of models that use VTLN and SAT training fol-
lowed by fMPE+MPE training [2] and speaker adaptation us-
ing MLLR;

• Rescoring of the lattices produced after MLLR with an in-
domain language model (restricted condition) and out-of-
domain language model (public condition). This is the only
step that uses non-EPPS training material;

• Static decoding graph with quinphone context;

• Training of acoustic models using EPPS material only; and

• Automatic punctuation of the final output with periods and
commas in a post-processing step.

The rest of this paper is organized as follows. Section 2 describes
echnical advances in this year’s system; Section 3 describes the
ing and test material used in this task; Section 4 describes the
m basics including the lexicon and acoustic and language mod-

Section 5 describes the overall system architecture; Section 6 de-
es the automatic punctuator and Section 7 presents the results.

2. Algorithms
2006 IBM TC-STAR speech recognition system is organized
nd an architecture that combines multiple systems through cross-
tation across different segmentation schemes and ROVER. This
on explains the algorithms using the Eglish system on the Dev06
set.

Speaker Segmentation and Clustering

EPPS rescordings contain speeches from politicians and inter-
rs in different languages, both from native and non-native speak-

of English. In this year’s evaluation, the number of speakers
their speech boundaries were not provided. Therefore, the first
in the recognition system is a segmentation of each session’s au-
file into speech and non-speech segments, followed by deletion
e non-speech segments. We use an HMM-based segmentation

his is not part of the 2006 Spanish ASR system
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system that models speech and non-speech segments with five-state,
left-to-right HMMs with no skip states. The output distributions in
each HMM are tied across all states in the HMM, and are modeled
with a mixture of diagonal-covariance Gaussian densities. The speech
and non-speech models are obtained by applying a likelihood-based,
bottom-up clustering procedure to the speaker independent acoustic
model used in the first pass of the decoding step. The speech segments
are then segmented into homogeneous segments using the change-
point detection procedure described in [3]. This is followed by a clus-
tering procedure to cluster the segments into clusters that can then be
used for speaker adaptation. Two different clustering procedures were
used:

S1: All homogeneous speech segments are modeled using a single
Gaussian density and clustered into a pre-specified number of
clusters using K-means and a Mahalahobis distance measure
(185 and 186 speaker clusters were identified in the Dev06 and
Evl06 test sets).

S2: All homogeneous speech segments are modeled using a
4 Gaussian mixture GMM, and an iterative segmenta-
tion/reestimation procedure similar to [4] is used to define
pseudo-speaker segments (110 and 132 speaker clusters were
identified in the Dev06 and Evl06 test sets).

2.2. Cross segmentation adaptation

Adaptation across different segmentation and speaker clustering
schemes is a form of cross-system adaptation which involves com-
puting speaker-specific transforms from ASR transcripts generated
from different systems. It aligns the transcripts generated from a sin-
gle system using one speaker clustering scheme (for example, S1) to
the speaker assignments generated by a second clustering scheme (for
example, S2) and adapts the same acoustic models with the newly
aligned transcripts. In our system, we chose transcripts from the
speaker segmentation scheme with the best speaker independent per-
formance (S1) for aligning with the speaker clusters from scheme, S2.
A comparison of error rates between self and cross adaptation studied
on the Dev06 test set using one set of acoustic models is shown in
Table 1. A gain of 0.8% absolute is obtained with cross adaptation
when compared to 0.3% to 0.4% absolute seen with self adaptation.

SI MLLR
S1 12.7 12.3
S2 13.0 12.8

S1.SI→S2.MLLR - 11.9

Table 1: Comparison of WER: Effect of cross segmentation adapta-
tion on Dev06 test set.

2.3. Ensemble of ASR systems using randomized decision trees

A characteristic of our system architecture is the use of an ensem-
ble of ASR systems whose decisions are combined using ROVER [5]
to obtain a single recognition hypothesis (see Fig. 1). The ROVER
voting approach is most effective when the individual ASR systems
of the ensemble make uncorrelated errors. A typical procedure to
build such systems is to use different acoustic front-ends (e.g. PLP
vs MFCC) or different phone sets across systems. In this work how-
ever, we adopt a more systematic approach to build multiple systems
by randomizing the training procedure. Randomness is introduced
by replacing the classical decision-tree state-tying procedure used to
tie context-dependent acoustic units, by a randomized decision tree
growing procedure [1]. Randomized decision trees are grown by ran-
domly selecting the split at each node, from the top N-best split can-
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tes. In contrast, standard decision trees are grown by selecting the
split candidate. ASR systems built on different sets of random-
decision trees will model different clusters of context-dependent
. Multiple systems can then be systematically built simply by
ging the random number generator seed. We have experimen-
observed that such systems are good candidates to be used with
OVER voting procedure [1]. Table 2 demonstrates a 0.6% re-

ion in WER on the Dev06 test set where the top 5 candidates were
idered for the split. Three different systems were built with 6000
s and 150K Gaussians and combined with the baseline system of
ame size.

Baseline R1 R2 R3 ROVER
WER 11.0 11.2 11.4 11.1 10.4

e 2: Comparison of WER: Effect of using an ensemble of ASR
ms on the Dev06 test set.

3. Training Data
English training data comprises of 101 hours of the English por-
of the EU plenary sessions with approximately 75 hours of speech
over 1900 speakers (politicians and interpreters) . This data cov-

essions from May 2004 through May 2005. The Dev06 devel-
ent test set on which the acoustic and language models were op-
zed consists of approximately 3 hours of data from 42 speakers
stly non-native speakers). The 2006 English Evaluation corpus
prises of 3 hours of data from 41 speakers and the Spanish corpus
ists of 3 hours each from EPPS and Spanish Parliament speeches.
text sources for language model training include the acoustic
ing transcripts (755K words), the final text editions (37M words),
data released by the University of Washington (525M words) and
dcast News data (204M words). The Spanish acoustic training
rial had approximately 95 hours of EPPS data and 33M words
FTE, with an additional 43M words of transcribed text from the
ish Parliament available for language model training.

4. Basic System Description
Acoustic Modeling

acoustic front-end employs 40-dimensional, perceptual linear
iction (PLP) features obtained from an LDA projection that are
n and variance normalized on a per utterance basis.
The speaker-independent (SI) acoustic models used in the system
ists of multiple sets of HMMs all of them trained on all tran-
ed EPPS acoustic material available for training as released by
H for this project. The speaker-independent model uses con-
us density left-to-right HMMs using Gaussian mixture emission

ibutions and uniform transition probabilities. The number of mix-
for a tied state s with Cs observations is given by 4C0.2

s . A
al Semi-Tied Covariance (STC) [6, 7] linear transformation is
. Each HMM has 3 states except for the silence HMM which is
gle state model. The English system uses 45 phones, 42 speech
es, 1 silence phone and 2 noise phones. The speech HMMs use
context dependent quinphone states modeled by 95K Gaussians.

Spanish system uses 49 speech phones and 4 noise phones mod-
using 4000 states and 100K Gaussians.

The evaluation system employs Vocal Tract Length Normaliza-
(VTLN) [8, 9]. The frequency warping is piecewise linear using
eakpoint at 6500Hz. It is estimated from among 21 candidate
ing factors ranging from 0.8 to 1.2 in steps of 0.02 using a full-
riance, voicing model built from 13-dimensional PLP features.



The VTLN model is trained on features in the warped space, using an
LDA transformation and decision tree clustering of quinphone statis-
tics to yield 6000 tied-states and 100K Gaussians for both English and
Spanish.

The SAT model [6, 7] is trained on features in a linearly trans-
formed feature space resulting from applying fMLLR transforms
computed on a per speaker basis to the VTLN normalized features.
Several sets of SAT HMMs were built for English using decision tree
clustering of quinphone statistics:

Model A: 6000 tied-states, 150K Gaussian system

Model B: 8000 tied-states, 180K Gaussian system

Model R1,R2 and R3: Three 6000 tied-states, 150K Gaussian sys-
tems obtained by using randomized decision tree growing pro-
cedure described in Section 2.3

For Spanish, the SAT model had 6000 states modeled by 100K Gaus-
sians.

The MPE model is trained on features obtained from a feature-
space minimum phone error (fMPE) transformation [2]. The fMPE
projection uses 1024 Gaussians obtained from clustering the Gaus-
sian components in the SAT model. Posterior probabilities are then
computed for these Gaussians for each frame. The fMPE transforma-
tion maps the high dimensional posterior-based observation space to a
40-dimensional fMPE feature space. The MPE model is then trained
in this feature space using 3 iterations of training using a Minimum
Phone Error criterion described in [10].

4.2. Language Modeling

4.2.1. English

All decoding passes use a 4-gram modified Knesser-Ney model that
was built using the SRI LM toolkit [11] using the various sources de-
scribed in Section 3. One model was trained on the training transcripts
(LM1) and another on the text corpus based on the Final Text Editions
(LM2). A perplexity minimizing mixing factor was computed using
the Dev06 reference text. The final interpolated language model used
in the construction of the static decoding graph contains 5.5M ngrams.
The interpolation weights assigned to the out-of-domain language
models LM3 and LM4 is relatively low, 0.12 and 0.13 compared to
0.21 and 0.54 for LM1 and LM2. For the language model rescoring
step, two different interpolated language models corresponding to the
restricted and public conditions were built. For the public condition,
two additional models were trained on out-of-domain text sources and
interpolated with LM1 and LM2. LM3 containing 80M n-grams was
trained on 525M words of web data released by the University of
Washington and LM4 containing 39M n-grams was built on 204M
words of Broadcast News. The final interpolated LM contains 130M
ngrams. The lattice rescoring step for the restricted condition used a
larger interpolated LM (9M ngrams from LM1 and LM2) built from
the EPPS sources.

The 59K recognition lexicon was obtained by taking all words
occurring at least twice in the text corpus and once in the the acoustic
training transcripts. The OOV rate on the dev06 test set was slightly
under 0.4%. This language model, lexicon and HMM components
were then used to build a static decoding graph of 57M states and
248M arcs.

4.2.2. Spanish

The language model for the decoding passes, built from the EPPS
acoustic training text, the FTE text and the Spanish Parliament text
contained 8M ngrams, while a larger model containing 90M ngrams
was used for the rescoring pass. The 65k recognition lexicon was
obtained by taking all words occurring at least 6 times in the EU and
8 times in the Spanish parliament text corpus and once in the acoustic
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ing transcripts. Names of all members of the EU parliament were
d. The OOV rate on the Dev06 test set was 1.2%.

5. Overall System Architecture
common in evaluation systems to combine recognition systems
make complimentary errors to produce the final output. This sec-
describes the overall system architecture detailing the decoding

s and acoustic models (described in Section 4.1) that include the
rithms described in Section 2.
The first step is speech segmentation and speaker clustering where
peaker clusters corresponding to the two schemes S1 and S2 are
rmined. This is followed by decoding steps (a) through (f) de-
ed below and represented by a single block (labeled as “Base-
) in Figure 1. Model A was used to decode the test data in 6
es using segmentation scheme S1.

) The SI pass uses the SI model and the LDA projected PLP
features.

) Using the transcript from a) as supervision, warp factors are
estimated for each cluster using the voicing model and a new
transcript is obtained by decoding using the VTLN model and
VTLN warped features.

) Using the transcript from b) as supervision, fMLLR transforms
are estimated for each speaker cluster using the SAT model. A
new transcript is obtained by decoding using the SAT model
and the fMLLR transformed VTLN features.

) The VTLN features after applying the fMLLR transforms are
subjected to the fMPE transform and a new transcript is ob-
tained by decoding using the MPE model and the fMPE fea-
tures.

) Using the transcript from d) as supervision, MLLR transforms
are estimated for each cluster using the MPE model.

) The lattices resulting from e) are rescored using the 4-way in-
terpolated language model described in 4.2. The one-best at
this step will be referred to as CTM.

el B was used to decode the test data using segmentation scheme
rom step (a) through step (c), i.e., to obtain the vtln warp factors
the fMLLR transforms corresponding to the speaker clusters in
For cross-segmentation adaptation, CTM (from step (f) above) is
used as the reference transcript to compute MLLR transforms for
el B and process steps (e) and (f) using S2. The one-best from
stage will be referred to as CTM′. The above steps (a) through
re applied to the three different models built using randomized
sion trees (R1, R2 and R3) using segmentation scheme S1. These

decodes from segmentation S1 were subsequently used to cross
t the models, R1, R2 and R3 and redecode the test data using seg-
tation scheme S2. Finally, three different decoded outputs CTM-
CTM-R2′ and CTM-R3′ were obtained. Last, CTM′, CTM-R1′,
-R2′ and CTM-R3′ were rovered together to produce the final

ut.

6. Automatic Punctuation
slation systems typically use punctuation marks as sentence de-
ters. This motivated the development of an automatic punctuator.
input to the punctuator is the final output of the ASR system con-
ng all word and non-word (silence, noise, laughter, breath, etc)
ts. Half of the English Dev06 test set was used for training and
emaining half for development. Classifiers were built only for
ds and commas given the lack of “!” in the training data as well
consistencies in the reference set. Punctuation marks are hypoth-
d only in the regions of non-word events due to the high corre-
n observed (98% for periods and 70% for commas) between the
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two. For a given contiguous sequence of non-words a Maximum En-
tropy classifier is used to decide if this sequence should be a period
or a comma. The identity and duration of the non-words, the differ-
ence in the LM probability between the word sequence containing the
punctuation symbol in the middle and the one without, the total du-
ration of the non-word region, and the unigram, bigram and trigram
contexts surrounding the non-word region were used as input features
for the maximum entropy classifier. The set of features used in the
classifier was determined by optimizing the Slot Error Rate metric in
the reference set. This punctuator had the best performance in the
2006 TC-STAR evaluation.

7. Results
Table 3 illustrates the gains obtained at each stage of the decoding pro-
cess using one segmentation scheme and the baseline acoustic models
(Model A). Discriminative training provides upto 2.7% absolute gain
over the SAT system MLLR adaptation. The transcripts correspond-

System English Spanish
SI 18.5 12.3

VTLN 18.1 10.8
SAT 15.4 9.7

fMPE+MPE 12.7 8.7
MLLR 12.3 8.7

LM Rescoring 11.6 7.8

Table 3: Error Rates of the baseline system on the Dev06 test sets for
English and Spanish using segmentation scheme S1.

ing to the last row in Table 3 were then aligned to speakers identified
using segmentation scheme S2 and the acoustic models (Model B)
were adapted using the newly aligned transcripts.3 Table 4 shows the
results of cross-segmentation adaptation followed by lattice rescor-
ing. The final numbers for the public and restricted conditions on the

System English Spanish
Cross-seg based MLLR 11.9 8.2

LM Rescoring 11.0 7.7

Table 4: Performance improvements with cross-segmentation adapta-
tion and rescoring on Dev06 test set.

3Use of Model A or Model B at this step does not produce a different result.
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06 and Evl06 test sets are given in Table 5. The English system
the combination of multiple, cross-adapted ASR systems accord-
o the procedure described in Section 5.

English Spanish
System Public Restricted Restricted
Dev 06 10.4 10.9 7.7
Evl 06 8.3 8.9 8.6

e 5: WERs on the Dev06 and Evl06 EPPS test sets using the 2006
uation System.

8. Conclusions
have presented the IBM 2006 TC-STAR ASR system. It can be
that adaptation across segmentation schemes voting across multi-
systematically-built ASR systems account for approximately 1%
lute reduction in WER. Additional out-of-domain training data
ides a reduction in WER of only 0.5%.
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Figure 1: Overall System Architecture
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