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Abstract
One popular feature type in speech recognition is based on linear
transformations of sequences of cepstral feature vectors. In gen-
eral the transformation is generated in two steps: first a transfor-
mation like linear discriminant analysis (LDA) or heteroscedastic
linear discriminant analysis (HLDA) is used to maximize separa-
tion between classes and reduce the dimensionality, followed by
a decorrelating transformation. Here we investigate the weighting
of classes when using the LDA transformation. In particular we
are concerned with the special status of silence, for which the data
can be arbitrarily long, and which can be represented by more than
one silence/noise model. The special case of our acoustic models
for commercial applications, which consist of several sub-models
for each type of application, like general English, digits, names,
alphabet, etc., creates a conflict when using a transformation like
LDA to improve the separability of states which correspond to the
same phoneme, but used within a different type of task. We also
evaluate replacing sample counts with error/accuracy counts and
cross-task LDA transformation estimation. The results show that it
is important to take these conditions into account and demonstrate
accuracy/speed improvements when appropriate care is taken in
computing the LDA transformations.

Index Terms: speech recognition, acoustic modeling, LDA class
weights, error count weights.

1. Introduction
Traditional speech recognition features capture short term spec-
tral characteristics, only relying on the static features of the short
speech segment. The next development consisted of augmenting
the spectral features by the time derivative of the features, doubling
the size of the feature vector. The natural extension was to use the
second time derivative, resulting in three times as many features,
but improving, in general, both the recognition accuracy and even
speed due to better pruning by a more accurate acoustic model.
The more recent approach to modeling the dynamic aspects of

the speech signal uses a sequence of spectral feature vectors [3].
A number of feature vectors, usually 9-15, is concatenated into
an extended feature vector. Such vectors are not suitable for use
in acoustic modeling, but their reduced form is. A technique like
linear discriminant analysis (LDA) can be used to reduce the di-
mensionality of the extended feature vector and to maximize the
separation of the acoustic model classes. In general the classes
range form the states of the context independent phoneme hid-
den Markov models (HMMs) to the states of the fully context
dependent phoneme HMMs. The number of classes is thus usu-
ally somewhere between 100-200 and many thousands, respec-
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ly for a conventional model for the recognition of continuous
ch. Special applications, like digit recognition may differ from
general case.

In the case of all the recognition experiments described here
e is an additional level of complexity. The acoustic model we
has been designed to achieve the best possible performance
NY task it might encounter in commercial speech recognition
lications[1, 2]. That means it has to perform recognition of
t strings as well as the best digit recognition systems, as well
eing just as competitive when recognizing colloquial general
lish, or any number of other applications. This is achieved by
g an extended phoneme set, creating a subset of phonemes that
dle just one application. The term phoneme is used loosely,
or example, in the case of digits we use the head-body-tail
cture for each digit, where the segments do not correspond to
nemes. The phonemes are all context dependent (triphonic)
d on the phonetic features of the neighboring phoneme. Thus
achieve context dependency across task boundaries, allowing
more than one type of application within the same utterance.
pical example would have a digit string embedded within a
eral English carrier phrase. This acoustic model also contains
silence/noise (henceforth silence) HMMs, two single state,
with the three state left-to-right structure, resulting in the total
ight silence states. The model has a total of six parts covering
ifferent types of applications with up to six versions of all En-
h phonemes. All HMMs are three-state left-to-right except for
digits bodies which are four-state HMMs. Multiple versions,
ast in principle, of the same phoneme or silence states could
ntially cause problems with techniques like LDA (or equally
A [4]) which would try to create the transformation to best
rate even the segments that are acoustically equivalent.

2. Experimental Setup

acoustic models have all been trained on the same training
, which consists of over a thousand hours of speech from nu-
ous databases covering the six types of applications. Only
e domains are tested here, general English, alphabet and digits.
training speech initially contained over 1000 hours of silence
ddition to the speech. This was considered wasteful and most
he silence was removed, preserving only a short silence seg-
t before and after utterances including all of the silence within
rances. Due to the computational load imposed by running so
y experiments on such a large database, the training process
minimized. The best available MMI trained model was used to
ent the training database. Every time a different LDA trans-
ation was generated, the MFCC features were transformed, a
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new estimate of the decorrelating transformation [5, 6] was found
and a new model was built using the existing segmentations, with-
out further training. Computational efficiency was also the reason
for using LDA rather than HLDA, as it has a closed form solu-
tion and is consequently much easier to compute and more than an
order of magnitude faster than HLDA.

All the testing was done on three different test sets. One was
alpha-digits (AD), with over a thousand strings, each with seven
alpha-digits. The language model did constrain for the length of
the alpha-digit sequence. The additional two tasks were general
English (GE), which we call TASK 1 and TASK 2 when describing
the results. Both are collections of the responses to a system greet-
ing in two different customer care applications, both with over five
thousand utterances by real customers.

The LDA transformation consists of collecting the sample
statistics for each class. Those statistics are then weighted based
on their frequency and then the transformation is computed. The
frequency can be based on the number of frames, counting all the
frames aligned with the input class in forced alignment of the train-
ing data and an existing acoustic model. We chose number of seg-
ments as weight, which, unlike the number of frames, ignores the
length of segments/states/classes, as it better matches the applica-
tion of speech recognition. It also produced better results in the
past experiments when direct manipulation of the weights given
different classes was not used. Based on the results here the con-
jecture is that the weight given to silence when counting silence
states, and not silence frames, gave a better result, and the change
in the rest of the segments was insignificant.

3. Experimental Results
In all the experiments here we use some or all of the 9219 states of
the context dependent acoustic model as classes for the purpose of
training the LDA transformation. In the first set of experiment we
chose to use only the states that correspond to the General English
(GE) subset of the model and the silence states. First we com-
pare the performance of the LDA transformation where the eight
silence states are kept as separate classes with the case where they
are merged into a single class. The weight given to the different
classes is the state counts, or the number of class occurrences in
the training database. If the weight of all the GE states , not in-
cluding silence, is normalized to 1.0, then the natural weight of
the silence states, based on the sample statistics was W = 0.27.
The performance is displayed as an accuracy/speed curve for the
three test sets in Figure 1.

It is clear from the results that it can be beneficial not to sep-
arate states that belong to the same class into multiple competing
classes, when computing the LDA transformation. In this experi-
ment we used the arbitrary weight for silence based on the training
database. However, in this case, the amount of the silence data was
arbitrarily reduced to what remained in the final training data.

Next we experiment with the weight given to the silence class
(the eight silence classes will be merged into a single class in all
the following experiments) relative to the normalized weight of 1.0
given to all the other states used in estimating the LDA transfor-
mation. In this case it is still only the GE states. The effect of
varying the silence class weight is shown in Figure 2.

Although there is some variability across different tasks, it is
clear that low weight of 0.27 or the high weight of 2.0 are clearly
inferior to the silence weights around 1.0.

Having established the optimal operating point for the silence

w
or

d 
ac

cu
ra

cy
, p

er
ce

nt
w

or
d 

ac
cu

ra
cy

, p
er

ce
nt

Figu
task

clas
tiga
pres
the
prov
resp
wei
out
the
state

eren
was
and
way
com
sum
by a
the
accu

386

INTERSPEECH 2006 - ICSLP
84

85

86

87

88

89

90

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

w
or

d 
ac

cu
ra

cy
, p

er
ce

nt

CPU time / audio time

ALPHADIGITS
Linux, Xeon, 2.4 GHz

GE, W = 0.27, multiple silences
GE, W = 0.27, one silence

72.5

73

73.5

74

74.5

75

75.5

76

76.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CPU time / audio time

TASK 1
Linux, Xeon, 2.4 GHz

GE, W = 0.27, multiple silences
GE, W = 0.27, one silence

67

67.5

68

68.5

69

69.5

70

70.5

71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CPU time / audio time

TASK 2
Linux, Xeon, 2.4 GHz

GE, W = 0.27, multiple silences
GE, W = 0.27, one silence

re 1: Word recognition performance on different recognition
s using one versus all eight classes for silence

ses when computing the LDA transformation, we next inves-
te other alternatives for selecting weights of all classes, but
erving the relative settings for the silence. Since the target is
improvement of recognition accuracy, and LDA provides im-
ed separation of classes, we decided to make the weights cor-
ond to the class error rates. Hopefully, this would give higher
ght to the ”problem” classes improving their separability, with-
impairing the performance of the already ”good” classes. Since
classes in this case are states of the context dependent HMM
s, we needed to find their recognition error rate.

The original best acoustic model was used to segment the ref-
ce transcriptions, providing the reference state sequences. It
also used to perform recognition of all the training speech,
after segmenting the hypothesized word sequences the same
the reference transcriptions were segmented we were able to
pute the state error rates. The error rate is computed as the
of all cases when the state was deleted, inserted, substituted
nother state, or another state was substituted by it, divided by
total number of state occurrences. Similar counts are found for
racies too, which are also used as class counts, and compared
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Figure 2: Word recognition performance using different weights
for one silence class

to the error counts and the sample counts. Similar counts apply
to the silence classes, but they are still merged, albeit at different
relative weights, into one silence class, whose weight is set to be
the same as the total weight of all the other classes used in com-
puting the LDA transformation. The recognition results are shown
in Figure 3.

The results show two different characteristics. When the LDA
transformation is trained using the same subset of the states as is
use for testing the model (GE in both cases), sample counts pro-
vide the best performance. However when the testing is performed
on AD test set after training on GE data, the error counts provide
the best basis for training the LDA transformation. In order to
investigate this phenomenon further we train LDA transformation
using only alpha-digit states, including silence, still preserving the
same silence class weights and merging into a single silence class.
The results based on alpha-digits trained LDA transformation is
shown in Figure 4. These results point to several different conclu-
sions. The first one is that using the AD error counts is bad. This
might be caused by the fact that many more errors are caused by
digits than alphabet part of the model creating an imbalance. Also
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re 3: Word recognition performance when class weights for
puting the LDA transformation are GE class counts, class er-
or class accuracy

em clear that cross training is beneficial. LDA trained on AD
ks well when recognizing GE, but not for recognizing AD, and
ilarly, LDA trained on GE works well for recognizing AD, but
as well on GE, comparatively speaking. In addition the best
lt for the AD task is achieved when LDA is trained using the
data weighted by the error counts.

We finally test what happens when all the data is included to
pute the LDA transformations, ignoring the potential prob-
of same phoneme separation across different task specific
neme sets. Those results are compared in the same plots with
the task dependent and cross task trained LDA transforma-
, with class weights based on sample and error counts. They
shown in Figure 5.

There is no single setting that excels in all the testing con-
ns. However some general trends can be observed. For a
ed task like alpha-digits it appears that the best performance
hieved by either training the LDA transformation using GE or
he available data, especially if using the error counts. For the
eral English tasks, LDA computed on the AD data works well,
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Figure 4: Word recognition performance when class weights are
either GE or AD class counts or class errors

providing the sample counts are used. However, recognition of the
GE tasks is also accurate when using all the available data, with
one task slightly more accurate when using error counts, the other
with using sample counts.

4. Conclusions

We investigated the effects of different setups when computing the
LDA transformation, as used in conjunction with a decorrelating
transformation. We compared single vs. multiple silence classes
(single is better), different weights given to the silence class (about
1.0 is best), using sample counts and error counts for weights of
individual classes, with error counts slightly advantageous, espe-
cially if based on a balanced class set. A surprise was that excellent
performance is achieved when computing the LDA transformation
on the data from a task significantly different than the test set used
for evaluating the model. Fortunately, using the data from all the
tasks provides close to optimal performance on all the tasks, espe-
cially if error counts are used instead of sample counts.
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re 5: Word recognition performance when all the data, GE
et or the AD subset are used for LDA transformations and are
ghted using either class counts or class error counts
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