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Abstract
We propose the “advanced” n-grams as a new technique for simu-
lating user behaviour in spoken dialogue systems, and we compare
it with two methods used in our prior work, i.e. linear feature com-
bination and “normal” n-grams. All methods operate on the inten-
tion level and can incorporate speech recognition and understand-
ing errors. In the linear feature combination model user actions
(lists of 〈 speech act, task 〉 pairs) are selected, based on features of
the current dialogue state which encodes the whole history of the
dialogue. The user simulation based on “normal” n-grams treats a
dialogue as a sequence of lists of 〈 speech act, task 〉 pairs. Here
the length of the history considered is restricted by the order of the
n-gram. The “advanced” n-grams are a variation of the normal n-
grams, where user actions are conditioned not only on speech acts
and tasks but also on the current status of the tasks, i.e. whether
the information needed by the application (in our case flight book-
ing) has been provided and confirmed by the user. This captures
elements of goal-directed user behaviour. All models were trained
and evaluated on the COMMUNICATOR corpus, to which we added
annotations for user actions and dialogue context. We then eval-
uate how closely the synthetic responses resemble the real user
responses by comparing the user response generated by each user
simulation model in a given dialogue context (taken from the an-
notated corpus) with the actual user response. We propose the
expected accuracy, expected precision, and expected recall evalu-
ation metrics as opposed to standard precision and recall used in
prior work. We also discuss why they are more appropriate met-
rics for evaluating user simulation models compared to their stan-
dard counterparts. The advanced n-grams produce higher scores
than the normal n-grams for small values of n, which proves their
strength when little amount of data is available to train larger n-
grams. The linear model produces the best expected accuracy but
with respect to expected precision and expected recall it is outper-
formed by the large n-grams even though it is trained using more
information. As a task-based evaluation, we also run each of the
user simulation models against a system policy trained on the same
corpus. Here the linear feature combination model outperforms the
other methods and the advanced n-grams outperform the normal n-
grams for all values of n, which again shows their potential. We
also calculate the perplexity of the different user models.
Index Terms: dialogue systems, user simulation, learning and
evaluation of dialogue strategies, evaluation metrics

1. Introduction
User simulations are becoming increasingly important in the field
of dialogue systems due to their use in automatic dialogue strat-
egy learning and the evaluation of competing strategies. Machine-
learning approaches to dialogue management have been proposed
by several authors [3, 7, 9]. These techniques focus on learning
optimal dialogue strategies from data and/or simulations. They
use Reinforcement Learning (RL) to find a policy which optimises
a reward function over dialogues. However, it is rarely the case
that enough training data is available to sufficiently explore the
vast space of possible dialogue states and strategies. Therefore,
a promising approach is to use small corpora to train stochastic
models for simulating real user behaviour. Once such a model is
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ilable, any number of dialogues can be generated through inter-
on between the simulated user and the dialogue policy, and can
sed for RL. Another motivation for user simulation is to make
asible to test the performance of different dialogue policies

inst simulated users in an efficient and inexpensive way. Using
users would require much more time and effort. In addition,

ry time we modified the dialogue strategy we would have to
at all experiments with human users from scratch.
User simulation can be on the intention level (e.g. speech
task – provide information, destination city) or on the sur-
level (words comprising utterances). Current approaches to
behaviour modelling for learning focus on the intention level.
ever, by incorporating performance statistics from other lev-

(such as speech recognition and natural language understand-
, the resulting systems can simulate the performance of input
essing of whole dialogue systems. User simulation on the sur-
level is mostly useful for evaluation purposes and can also

sed to accelerate the development process of dialogue systems
Several approaches to user simulation on the intention level

e been proposed [4, 9], but none of them uses the rich contex-
information that we employ here.
Note that this paper is an extension of our work in [1]. Here we
a much more detailed annotation of the COMMUNICATOR cor-
and new methods for both training and evaluating user models.
introduce the “advanced” n-grams and the expected accuracy,
ected precision, and expected recall metrics as opposed to stan-

precision and recall introduced in prior work [4]. Our meth-
are designed for use with “Information State Update” (ISU)
ogue systems that use rich representations of context [8], but
also be used for systems with simpler definitions of context.
In section 2 we discuss the annotations we have added to the

MMUNICATOR data. Section 3 describes our user simulation
els based on linear feature combination and n-grams. A brief
ription of the system policy is also given. In section 4 we
ent our evaluation metrics. In section 5 we describe the exper-
nts carried out and discuss the results. Section 6 presents our
clusions and directions for future work.

2. The COMMUNICATOR data set
data set is the COMMUNICATOR corpus (dialogues in the do-

n of flight, hotel, and car reservations) annotated as a sequence
nformation states (IS) recording dialogue context phenomena

as grounding and user intentions [2]. An example IS is shown
gure 1. Due to space restrictions not all IS fields are depicted.
Note the group of IS fields { PreviouslyFilledSlots, Previous-
lledSlotsValues, PreviouslyConfirmedSlots }, which inform us
ut the current status of the slots and thus may only contain one
ance per slot. We shall use this information in the advanced n-

s method, where we condition users’ actions not only on their
ious speech acts and tasks but also on whether slots associated
the current task have been filled or confirmed.

For the experiments reported in this paper, we used the com-
e COMMUNICATOR 2001 corpus. This subset consists of 8 sys-
s, 202 users, 1683 dialogues, and 125,388 states. In [1, 3, 4]
eliminary version of these annotations has been used (4 sys-
s, 97 users, 697 dialogues, and 51,309 states). In addition, the
otations were not as detailed as the current ones.
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DIALOGUE LEVEL
Speaker: user
ConvDomain: [about_task]
SpeechAct: [provide_info,provide_info]
AsrInput: <date_time>may eight morning</date_time>
TransInput: <date_time>may seventh morning</date_time>
Output:
TASK LEVEL
Task: [depart_date,depart_time]
FilledSlot: [depart_date,depart_time]
FilledSlotValue: [may eight,morning]
GroundedSlot: [orig_city,dest_city]
LOW LEVEL
WordErrorRate: 33.33
KeyWordErrorRate: 50.00
HISTORY LEVEL
SpeechActsHist: opening_closing,instruction,
request_info,[provide_info],implicit_confirm,
request_info,[provide_info],implicit_confirm,
request_info,[provide_info,provide_info]

TasksHist: meta_greeting_goodbye,meta_instruct,
orig_city,[orig_city],orig_city,
dest_city,[dest_city],orig_dest_city,
depart_arrive_date,[depart_date,depart_time]

PreviouslyFilledSlots: [orig_city],[dest_city],
[depart_date],[depart_time]

PreviouslyFilledSlotsValues: [cincinnati],[denver],
[may eight],[morning]

PreviouslyConfirmedSlots: [orig_city],[dest_city]

Figure 1: An example Information State. User information ap-
pears between [] parentheses.

3. The user and system simulations
3.1. Simulating ASR and understanding errors

A notable constraint on data to be useful for machine learning is
that all captured features should in principle be available to a dia-
logue system at runtime – so that a dialogue system using a learnt
policy can compute a next action in any state. That means that in
[2] we needed to annotate the automatic speech recognition (ASR)
hypotheses of the systems, rather than the transcribed user utter-
ances that are also provided in the corpus. Moreover, a parser was
incorporated in our automatic annotation system to extract the se-
mantic information of those utterances. Therefore the data we use
for training our user models (both linear feature combination and
n-grams) incorporates both ASR and natural language understand-
ing (NLU) errors. In the future we intend to extend our annotations
of the users’ turns based on the transcriptions of user utterances
and then apply techniques for simulating ASR and NLU errors
that do not depend on specific ASR and parsing modules. Now
our models simulate the ASR errors of the speech recognisers in
the COMMUNICATOR systems and the NLU errors of our parser.

3.2. The linear feature combination user simulation model

The ISU framework is significantly different from the frameworks
used in previous research on learning dialogue policies for user
behaviour, in that the number of possible states is extremely large.
Having a large number of states is a more realistic scenario for flex-
ible, and generic dialogue systems, but it also makes many learning
approaches intractable. To overcome the large state space we need
to exploit commonalities between different states. The feature-
based nature of ISU state representations expresses exactly these
commonalities between states through the features that the states
share. There are a number of techniques that can be used for learn-
ing with feature-based representations of states, but the simplest
and most efficient is to use a linear combination of features.

We use a linear combination of features to map from a vector
of real valued features f(s) for the state s to a probability distri-
bution P̂ (a|s) over user actions a. The state vector mapping f(s)
is computed using the four levels of our annotation of the COM-
MUNICATOR data (see figure 1 and section 2), that is, the model is
trained using the complete information state and not only informa-
tion about the speech act and task. There are 1282 features. The
linear user model will choose the next user action (out of a total of
522 lists of 〈 speech act, task 〉 pairs) according to a distribution
learnt from the data. More details are given in [1, 3]. Note that the
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ar feature combination model described in [1, 3] could produce
a single 〈 speech act, task 〉 pair instead of a list.

The dialogue system policy which we use in our evaluation of
models is also based on a linear combination of state features
the annotated COMMUNICATOR data. Supervised learning is
to train the linear feature combination model to predict the

t system action, and the most probable next action is taken as
system policy’s choice – see [3] for full details. The actions are
eech act, task 〉 pairs. In addition, there are release turn and
dialogue actions. There are a total of 74 actions which occur
e data. The set of state features is the same as those used for

linear feature combination user simulation model.

The “normal” n-gram user simulation model

user simulation based on n-grams treats a dialogue as a se-
nce of lists of 〈 speech act, task 〉 pairs. It takes as input the
most recent lists of 〈 speech act, task 〉 pairs in the dialogue
ory, and uses the statistics of n-grams in the training set to de-

on the next user action (one of the 522 lists of 〈 speech act,
〉 pairs). If no n-grams match the current history, the model

back-off to smaller n-grams. We use the annotated COMMU-
ATOR data as a sequence of lists of 〈 speech act, task 〉 pairs
training data, and we use the CMU-Cambridge Statistical Lan-
ge Modelling Toolkit v2 to generate n-grams using absolute
ounting for smoothing the n-gram probabilities.
An example 3-gram that would lead to the user action shown
gure 1 would be:
system, implicit confirm, orig dest city 〉, 〈 system, re-
st info, depart date 〉, 〈 user, [(provide info, depart date), (pro-

info, depart time)] 〉}.
N-gram models have the advantage of being purely proba-
tic, fully domain-independent, and can be trained easily once

ugh data is available. Their weakness is that they may not place
ugh constraints on the user to simulate realistic behaviour. The
erated responses may correspond well to the previous system
on, but often they do not make sense in the wider context of the
ogue (for example, failing to incorporate goal-directed user be-
iour). One solution to this problem is to use a high order of n.
ever, n cannot be arbitrarily high due to data sparsity issues.

The “advanced” n-gram user simulation model

rder to provide n-grams with more relevant information about
context of the dialogue we built “advanced” n-gram models
re we condition not only on the speech acts and tasks but also

the status of the associated slots, i.e. whether they are filled
confirmed. The idea behind this approach is that the user is
very likely to provide information again about a slot that has
n confirmed but rather will proceed to fill the remaining slots
rder to accomplish his/her task.
For this reason we add “status flags” to the n-grams, and in
case the 3-gram that would lead to the user action shown in
re 1 would now become:
system, implicit confirm, orig dest city, 0 〉, 〈 system, re-

st info, depart date, 0 〉, 〈 user, [(provide info, depart date),
vide info, depart time)], 0 〉} .
The status flag can be either 1 if all associated slots are both
d and confirmed or 0 in all other cases. In the previous ex-
le when the system implicitly confirmed the “orig dest city”
tates before the state of figure 1) none of the “orig city” and
st city” were both filled and confirmed (they were only filled),
ce the status flag was 0. In the same way when the system re-
sted information about “depart date” (1 state before the state
gure 1) the status flag was 0 since the “depart date” slot was
filled or confirmed.
This approach incorporates some aspect of goal-directed user
aviour. The results in section 5 indicate that it produces better
simulation models than the normal n-grams.



4. Evaluation metrics
There are no generally accepted criteria as to what constitutes a
good user simulation model in dialogue systems. In our view,
a good user model should be able to generate “human-like” be-
haviour and dialogues that make sense while interacting with a
system policy. We must also remember that user simulations are
to be used for automatic dialogue strategy learning. For this rea-
son we desire user simulations which do not always act in the same
way in identical states – we need to explore the policy space, so
some reasonable amount of variation is required. All our user sim-
ulation models are stochastic, i.e. they produce actions based on
a probability distribution learnt from the training data and not al-
ways the action with the highest probability. Our metrics have
been calculated based on this distribution.

4.1. Accuracy, precision, recall, and perplexity

To assess whether our models produce human-like behaviour we
need to compare their output with real responses given by users
in the same contexts. For this purpose we propose the expected
accuracy, expected precision, and expected recall metrics.

We define expected accuracy (EA) as the expected proportion
of simulated user turns that match exactly the real user turn. In
other words, the EA is the percentage of the time that the model
would choose the same action as the observed action if we ran the
model for a large number of times through the same states found
in the data, each time generating an action according to the dis-
tribution produced by the model. This measure is also known as
“predicted probability” [10]. One consequence of this measure is
that the maximum EA is not 1. For example, if in a particular
context 90% of real users supply origin city information, and the
remainder ask for help, then the best EA we can hope for is 90%
(always choosing to supply the origin city). Also, if the model has
the same behaviour as real users, then the EA is even lower, at
0.9 ∗ 0.9 + 0.1 ∗ 0.1 = 82%.

We use expected precision (EP) and expected recall (ER) to
quantify how closely the synthetic turn resembles the real user
turn. Precision and recall are a common measure of “goodness”
in user modelling [10] and they were first used in evaluating user
simulation models in dialogue systems by [4]. In [4] precision and
recall were calculated always choosing the action with the highest
probability. In the n-gram examples of sections 3.3 and 3.4 we
can see that it is possible for an action to have more than 1 com-
ponents, i.e. the action [(provide info, depart date), (provide info,
depart time)] consists of the 2 action components (provide info,
depart date) and (provide info, depart time). As with accuracy,
we measure the expected value of precision and recall we would
get if we selected from the models distribution a large number of
times. EP measures the proportion of correct action components
among all the predicted action components. An action component
is considered correct if it matches at least one of the action com-
ponents in the real user response. ER measures how many of the
action components in the real response are predicted correctly.

Perplexity (PP) is widely used for measuring the performance
of language models but we believe it can also be a useful metric
for the evaluation of user simulation models. We first introduced
it as a measure of the quality of a user simulation model in [1].
One way to interpret PP is as a measure of the number of possible
actions that the user model has to choose between at a given state.

4.2. Task performance

We evaluated our user simulation models by running them against
a learnt system policy (see section 3.2). The quality of the simu-
lated dialogues produced was then measured as a function of the
filled slots, confirmed slots, and number of actions performed by
the system in each dialogue. We give 25 points for each slot which
is filled, plus another 25 points for each slot which is also posi-
tively confirmed. We also deduct 1 point for each system action
performed, to penalise longer dialogues. The maximum possible
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e is 198 (i.e. 200 minus 2 actions: ask for all the user infor-
ion in one turn, and then offer a flight). The motivation behind
evaluation metric is that confirmed slots are more likely to be
ect than slots which are just filled. This scoring assumes that
firmed slots are twice as likely to be correct.

5. Experimental results
divide the COMMUNICATOR corpus in training and test sets.
all our experiments we use 2-fold cross validation.

Comparing simulated and real user responses

expected accuracy results for all models are displayed in fig-
2. The large n-grams produce the best expected precision (EP)
expected recall (ER). That means that the large n-grams pro-

e the best performance on the action component level. This
bit surprising, since the linear model has access to more in-
ation to decide on its action. However, the linear model pro-

es the highest expected accuracy (EA), i.e. performs better on
whole action level. The two types of n-grams (normal and
anced) have similar EA, EP and ER values for 5-grams and 4-

s. However, the advanced 3-grams and 2-grams have a better
ormance than their normal counterparts, which means that the
itional information they have about the status of the filled and
firmed slots can be an advantage. Unfortunately the 5-grams
4-grams suffer from data sparsity which becomes more severe
their advanced version and that explains the lack of improve-
t. Nevertheless considering that the smaller n-grams are the

s that cannot capture much information about the history and
efore need information from additional features to be robust,
result is promising. We must also keep in mind that it is diffi-
to collect enough data to produce robust n-grams with a high
e of n. The strength of the advanced n-grams is that they are
er than the normal n-grams for smaller values of n, i.e. values
that are used in practice to produce robust estimates.

In [4] the best standard precision and recall scores were re-
ed using the Pietquin model [9] and led to precision of 40.16%
recall of 33.38%. However, these results appear to be calcu-

d with the model always choosing its best action, which does
correspond to the real behaviour of the model, and is likely to
uce better results than the EP and ER. For example, when we

this way of measuring precision and recall for the linear model,
get 55.18% precision and 52.65% recall, which are much bet-
results than those for EP and ER. We also get an accuracy of
2% for the linear model when the best action is always cho-
These results are also much better than the above results from
However, we cannot compare these results directly due to the
that all models in [4] were trained using a preliminary version

he data which we use here (only 4 systems with less detailed
otations). Nevertheless it is interesting that we produce better
imilar results even though none of our models explicitly incor-
tes goals, as is the case for the Pietquin model, and our models

trained and tested on very detailed data with higher perplexity
more actions to choose between. [10] used both accuracy and
dicted probability” (equivalent to our EA) to compare the per-
ance of different predictive models. Their results showed that

provides finer-grained information than accuracy.
The perplexity (PP) results are depicted in figure 2. The linear
ure combination model has the lowest PP, as expected, since
ses more features than the n-grams and the complete dialogue
ory. PP is related to EA because they both take into account the
ability distribution of actions. However, PP is more severely

cted by assigning a very low probability for the observed ac-
, such as for an unseen event. These cases will add a large value
ross-entropy. This explains why the advanced n-grams always
e higher PP than the their normal counterparts for all values of
hereas, as it was explained above, the advanced 3-grams and
ams produce higher EA than their normal versions.



Accuracy, Precision, Recall, and Perplexity
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linear 5-gram 4-gram 3-gram 2-gram

normal-EA
advanced-EA
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advanced-ER
normal-PP
advanced-PP

Figure 2: Expected accuracy (% EA), expected precision (% EP),
expected recall (% ER), and perplexity (PP) results.

5.2. Evaluation against a learnt system policy

We also evaluated the different user simulations by running them
against a learnt system policy. To evaluate the success of a dia-
logue, we use the final state of the dialogue to compute a scoring
function. Because currently we are considering users who only
want single-leg flight bookings, the scoring function looks at the
four slots relevant to these bookings: origin city, destination city,
departure date, and departure time.

Each user simulation was run for 1000 dialogues against the
system policy. The final state for each one of these dialogues was
then fed through the scoring function described in 4.2 and averaged
across dialogues. The results are shown in figure 3. The baseline
score is produced by feeding the actual data through the scoring
function. The linear model produces better scores than the n-grams
and the advanced n-grams are consistently better than the normal
n-grams. This is true also for 5-grams and 4-grams even though for
these values of n the advanced n-grams suffer from data sparsity
and the normal n-grams have similar expected accuracy and lower
perplexity. It seems that the advanced 5-grams and 4-grams suffer
from data sparsity but when they have estimates these are robust.
Higher order n-grams (both normal and advanced) suffer from data
sparsity and back-off very often to 3-grams. That explains the sim-
ilar task performance of 5-grams, 4-grams and 3-grams. After es-
timating the distribution of system turn lengths in the COMMUNI-
CATOR corpus it was shown that the 5-gram, 4-gram and 3-gram
models cover 92.56%, 88.15% and 71.61% respectively, of the se-
quences of contiguous system actions appearing in the data. That
means that the 3-gram has adequate coverage of the sequences of
system actions and explains once more the good performance of 3-
grams. On the other hand the coverage of bigrams is only 42.08%.
From all the metrics we use, perplexity and expected accuracy are
the ones that reflect the results in task completion, i.e. the linear
model that has the lowest perplexity and highest expected accuracy
produces the best performance in terms of filled slots, confirmed
slots and length penalty.

6. Conclusions
We described and compared three methods for simulating users
of spoken dialogue systems and three evaluation metrics for mea-
suring their performance. We discussed why expected accuracy,
expected precision and expected recall are more appropriate met-
rics for user simulation than their standard counterparts since they
are based on the probability distribution of actions and not only on
the action with the highest probability.

The strength of the advanced n-grams is that they outperform
normal n-grams especially for small values of n. This is very im-
portant because it is rarely the case that the training data is ade-
quate to generate robust n-grams with high values of n. The ad-
vanced n-grams prove to be a good trade-off between the linear
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Task Performance
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re 3: Results for different user simulations evaluated against
arnt system policy.

ure combination model which requires the complete informa-
state for training and the normal n-grams that are trained using
ted information.
Our future work will focus on using other methods (e.g.
esian networks) to model the user more accurately. Bayesian
orks are designed to capture more complex dependencies and
better model the reasoning of the user. We have used the lin-
model to train a system policy [3] which we then evaluated
real users against a hand-crafted policy [5]. Preliminary re-

s showed that the learnt policy produced a gain of 14.2% in
eived task completion. We intend to use also the advanced n-
s for training policies and then evaluate them with real users.

s is the best way to evaluate user simulations with respect to
good are in practice the system policies that they train.
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