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Abstract
Full covariance models can give better results for speech

recognition than diagonal models, yet they introduce complica-
tions for standard speaker adaptation techniques such as MLLR
and fMLLR. Here we introduce efficient update methods to train
adaptation matrices for the full covariance case. We also experi-
ment with a simplified technique in which we pretend that the full
covariance Gaussians are diagonal and obtain adaptation matrices
under that assumption. We show that this approximate method
works almost as well as the exact method.

1. Introduction
Maximum Likelihood Linear Regression (MLLR) and feature
space MLLR (fMLLR, also known as constrained MLLR) are
commonly used speaker adaptation techniques; however, the con-
venient and efficient update techniques that are commonly used [1]
only work for diagonal covariance Gaussians. Recently there
has been some interest in the use of full covariance Gaussians
and subspace representations of full covariance precision matri-
ces [4, 5, 2, 10]. However, to date no very convenient and efficient
implementations of MLLR and fMLLR adaptation exist for the full
covariance case. In [4, 5], general purpose numerical optimization
routines were used to optimize the adaptation matrices; however,
this is not very convenient if the aim is to produce self-contained
software. In [2], elegant row-by-row updates for adaptation matri-
ces were introduced; however, that approach is considerably less
efficient than the approach presented here.

In this paper we present an efficient iterative update that opti-
mizes the adaptation matrices in about the same time as diagonal-
covariance MLLR and fMLLR. It is applicable in the “time-
efficient” (as opposed to memory-efficient) versions of the MLLR
and fMLLR computation, where we accumulate mean statistics
(in the case of MLLR) or full covariance mean and variance statis-
tics (in the case of fMLLR). We also present experiments compar-
ing the exact implementations of MLLR and fMLLR to approxi-
mate versions in which we approximate the covariances (or preci-
sions) with their diagonal. The diagonal-precision approximation
was also used in [2]; however, we show here that the diagonal-
covariance approximation (previously used by us in [13]) works
better.

2. MLLR
Maximum Likelihood Linear Regression (MLLR) [1] is a speaker
adaptation technique in which the means of Gaussians in a speech
recognition system are adapted so as to maximize the likelihood of
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adaptation data for a particular speaker. The means are trans-
ed with

μ
(sm) = W

(s)
ξ
(m) (1)

re W (s) =
h
A(s)b(s)

i
is a matrix containing a square trans-

and a bias term and ξ(m) =

»
μ(m)

1

–
.

For diagonal systems, the MLLR matrix is estimated as fol-
s. Let c(sm) =

PTs

t=1 γ(stm) be the soft count of Gaus-
m from the current speaker and let the vector E(x)(sm) =

s
1 γ(stm)

x
(st)

Ts
t=1 γ(stm)

be the average of the features in frames which

n to Gaussian m for speaker s, where γ(stm) are the Gaussian
teriors.
The part of the auxiliary function that changes with the current
sform W is:

0.5
MX

m=1

c(sm)
dX

i=1

μ
(sm)
i − E(x)

(sm)
i + E(xxT )

(sm)
ii

σ2
i

(m)
(2)

re σ2
i

(m)
is the variance for dimension i of mixture m. This is

ivalent to:

0.5

MX
m=1

c(sm)
dX

i=1

(wT
i ξ(m))2 − 2(wT

i ξ(m))E(x)(sm)(d)

σ2
i

(m)
,

(3)
re the column vector wi is the transpose of the i’th row of W .
can solve for each of the wi separately. Let

ki =
MX

m=1

c(sm)ξ(m)E(x)(sm)(d)

σ2
i

(m)
(4)

Gi =

MX
m=1

c(sm)ξ(m)ξ(m)T

σ2
i

(m)
. (5)

n the part of the auxiliary function which depends on wi is:

w
T
i ki − 0.5w

T
i Giwi. (6)

s is maximized when

wi = G
−1
i ki. (7)

s can be estimated either in a memory efficient way by accumu-
g ki and Gi directly from the data, or in a time efficient way
toring mean statistics and computing ki and Gi from them.

3. fMLLR
LR, also known as constrained MLLR [1], is a feature space

sform where we transform the features with

x̂
(t) = A

(s)
ξ
(t) (8)
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where again W (s) =
h
W (s)b(s)

i
contains the square matrix and

the bias term, and ξ(t) =

»
x(t)

1

–
is the extended feature vector

for time t.
The auxiliary function equals the likelihood of the transformed

data plus the log determinant log |det(A)|. The requirement for
the determinant is most clear if we view fMLLR as a model space
transform (constrained MLLR), where A becomes a transform on
the variances (AT

Σ
(m)A).

The part of the auxiliary function excluding the determinant
equals

−0.5

MX
m=1

c(sm)E
 

dX
i=1

(μ
(m)
i − wT

i ξ(t))2

σ2
i

(m)

!(sm)

(9)

where E(·)(sm) is the average value for speaker s and Gaussian m.
This equals

−0.5
MX

m=1

c
(sm)

dX
i=1

μ
(m)
i

2
− 2μ

(m)
i

wT
i

E(ξ)(sm) + wT
i

E(ξξT )(sm)wi

σ2
i
(m)

.

(10)
The quantities E(ξ)(sm) and E(ξξT )(sm) can be derived

from the mean and full variance statistics from the current

speaker: E(ξ)(sm) =

»
E(x)(sm)

1

–
and E(ξξT )(sm) ="

E(xxT )(sm) E(x)(sm)

E(x)(sm)T
1

#
. Again, the linear and quadratic

terms in wi are gathered as ki and Gi:

ki =

MX
m=1

c(sm)μ
(m)
i E(ξ)(sm)

σ2
i

(m)
(11)

Gi =
MX

m=1

c(sm)E(ξξT )(sm)

σ2
i

(m)
. (12)

The auxiliary function is now:

log(|det(A)|) −
dX

i=1

w
T
i ki − 0.5w

T
i Giwi. (13)

3.1. Row-by-row iterative fMLLR

The transform W can estimated through maximization of Equa-
tion 13 using an iterative update described in [1]. It uses the fact
that the determinant of a matrix equals the dot product of any given
row of the matrix with the corresponding row of cofactors. If we
are updating the i’th row of the transform then we let the column
vector ci equal the transpose of the i’th row of the cofactors of
A, extended with a zero in the last dimension to make a vector of
size d + 1, so that the determinant det(A) can be represented as a
function of wi by wT

i ci. Now we can optimize the function

log(|wT
i ci|) + w

T
i ki − 0.5w

T
i Giwi. (14)

Since the matrix of cofactors of a matrix M equals
det(M )M−1T

, and the value of wi that maximizes the
expression in Equation 14 is not affected by any constant factor in
ci, we could also let ci equal the i’th column of the current value
of A−1 (extended with a zero to make a d+1 dimensional column
vector) and thus avoid any numerical problems that could occur if
the determinant is very large or small. If we let f = wT

i ci, the
solution to Equation 14 is wi = G−1

i (ci/f + ki). Substituting
the solution for wi into the expression for f and rearranging, we

get
f , s
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f2 − fcT
i G−1

i ki − cT
i G−1

i ci = 0, which we can solve for
o the final answer is:

[a, b, c] :=
h
1, −c

T
i G

−1
i ki, −c

T
i G

−1
i ci

i
f :=

−b ±√
b2 − 4ac

2a

wi := G
−1
i (

ci

f
+ ki).

can test the value of the auxiliary function in Equation 14 to
which solution to the quadratic equation is the best one. This
n iterative procedure, so starting from the baseline transform
re A = I , b = 0 we apply the update to each row in turn
continue iterating until the change in the auxiliary function is
ll, or for (say) 20 iterations.

4. Full covariance MLLR
Baseline approaches

full covariance case in MLLR has a simple solution, but it
ot a practical one ([1], see footnote page 3). The part of the
iliary function that depends on the transformation matrix is

5

MX
m=1

c(sm)(W ξ
(m)−E(x)(sm))T

Σ
(m)−1

(W ξ
(m)−E(x)(sm)).

(15)
s is a quadratic function in the elements of W . To solve it in
ed form we would have to accumulate a matrix of size d(d+1)
d(d+1) and invert it. This problem would take time O(d6)
ch theoretically for d = 40 might take about 4 seconds at
LOP; however memory access time would slow this down.

ddition, although the matrix should be invertible, we might en-
nter numerical problems inverting a matrix in this very high
ension [2]. Also the accumulation of the large matrix would
time O(d4) per Gaussian accessed (assuming we did this from
n statistics) which is slower than the O(d3) time needed to
pute the matrices Gi which currently dominates the computa-
.
We can also compare with the approach taken in [2, 5] in
ch a general purpose optimization package was used to com-

the MLLR and fMLLR transforms. It is difficult to compare
that approach without more details; however, the current ap-

ch does have the advantage of being explicitly spelled out and
ee of the requirement to incorporate third-party software.

Proposed approach

proposed approach to full-covariance MLLR computation has
nd the same speed as the baseline MLLR computation (as-
ing we are using the time-efficient version from stored mean

istics), and is numerically stable. It is in iterative approach in
ch on each iteration we calculate the gradient of the auxiliary
tion w.r.t. W . We assume that the second gradient is the same
it would be in the diagonal case (represented by the matrices
, and compute the updated value of W . We then measure the
iliary function to see if it has improved. If it has, we continue
he next iteration; if not, we reduce the learning rate by a fac-
of 2 by doubling all the matrices Gi, and continue. When the
nge in auxiliary function is small (or after, say, 30 iterations)
stop.



In detail, the method as follows. From stored speaker-specific
mean statistics, compute: for i = 1 . . . d,

Gi =

MX
m=1

c(sm)ξ(m)ξ(m)T

Σ
(m)
ii

. (16)

Set the transformation matrix W = [Ab] to its initial value [I0].
Then, on each iteration, compute the d by (d + 1) matrix L which
is the gradient w.r.t the auxiliary function:

L =

MX
m=1

c(sm)(Σ(m)−1
(W ξ

(m)−E(x)(sm)(d)))ξ(m)T
. (17)

If li is the column vector which equals the transpose of the i’th row
of L, we can compute the vectors ki which would give the MLLR
auxiliary function wT

i ki − 0.5wT
i Giwi a differential w.r.t. ki

equal to li:
ki = li + Giwi. (18)

We then do the normal MLLR update,

wi = G
−1
i ki. (19)

Before and after the update we compute the partial auxiliary func-
tion given by:

−0.5
MX

m=1

c
(sm)(W ξ

(m) − E(x)(sm)(d))Σ(m)−1
(W ξ

(m) − E(x)(sm)(d)).

(20)
If this has increased we continue to the next iteration; if it has

not, we decrease the learning rate by doubling Gi. The increased
Gi are also used for subsequent iterations. We then set W to its
previous value, recompute ki and update W , and retest, continu-
ing until we see an increase. If the change is very small or after a
specified number of iterations, we stop.

Note that the extra computation that must be done on each
iteration takes O(d2) time per Gaussian, compared with the O(d3)
time per Gaussian used to compute the matrices Gi in both this and
the standard MLLR update. Therefore if the number of iterations
is less than the dimension d (which it typically is) the time taken is
of the same order as the time taken for the standard MLLR update.

5. Full covariance fMLLR
The full covariance fMLLR update works on the same principle
as the full covariance MLLR update. We assume that the second
gradient in the data-dependent part of the auxiliary function (i.e.,
excluding the determinant) is the same as in the diagonal case,
and accumulate the matrices Gi the same as in the diagonal case.
Then on each iteration of the update we accumulate a d by d + 1
matrix L which equals the gradient of the data-dependent part of
the auxiliary function (i.e., excluding the determinant) w.r.t. the
fMLLR transformation, and do a normal fMLLR update using ki

vectors derived from L and Gi. We measure the auxiliary function
on each iteration and if it fails to increase we double the matrices
Gi (to halve the learning rate) and retry.

The matrices Gi are defined as for fMLLR, in Equation 12.
The current gradient L is:

L =

MX
m=1

c(sm)
Σ

(m)−1E
“
(μ(m) − W

(s)
ξ)ξT

”(sm)

, (21)

where ξ is the extended feature vector

»
x

1

–
. and E(·)(sm) means

the average value of some quantity for frames aligned to the Gaus-
sian m for speaker s. Expressed in terms of the feature statistics,
and dropping the superscript (sm) in E(·)(sm), this equals:

MX
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1

c(sm)
Σ

(m)−1
„

μ
(m)
h
E(x)T 1

i
− W

(s)T
» E(xxT ) E(x)

E(x)T 1

–«
.

(22)
s, this implementation of full covariance fMLLR requires us
tore full covariance statistics from the data. As for MLLR, on

iteration we set for each column vector li corresponding to a
of L,

ki = li + Giwi, (23)
then use the ki and Gi to estimate the fMLLR matrix W using
iterative row-by-row update as in Section 3.1. As before, we
sure the auxiliary function from the data and if it has decreased

double Gi, recompute the ki from the current L and recompute
fMLLR transform W .
The part of the auxiliary function relating to the fMLLR ma-

, which we must measure to determine convergence, is (drop-
the superscript (sm),

−0.5

MX
m=1

c
(sm)

 
tr

 
Σ

(m)
W

(s)
"

E(xxT ) E(x)

E(x)T 1

#
W

(s)T
!

−2 μ
(m)T

Σ
(m)

W
(s)

»
E(x)

1

–
+ μ

(m)T
Σ

(m)
μ
(m)

− 2 log | det A|

«
.

6. Approximate MLLR and fMLLR
dditional to exact implementations of MLLR and fMLLR for
full covariance case, we also report experiments with two
e similar approximations. One, which we will call diagonal-
ision MLLR and fMLLR (as used for MLLR in [2]), is to per-

the diagonal MLLR computation while pretending that the
precision matrix equals a diagonal matrix with the same diag-
l elements as the real precision matrix. The other, diagonal-
ariance MLLR and fMLLR (as used by us in [13]), assumes
the covariance matrix is diagonal and has the same diagonal
ents as the real covariance matrix.

7. Experimental setup
report experiments on the Mandarin section of the RT’04 test
from the EARS program. The test set is 1 hour long after seg-
tation. The training data consists of 30 hours of hub4 Man-
n training data, 67.7 hours extracted from TDT-4 data (main-

Chinese only), 42.8h from a new LDC-released database
C2005E80) and 50 hours from a private collection of satellite
. The baseline system (similar to that described in [12]) has
0 cross-word context-dependent states with ±2 phones of con-
and 100000 Gaussians. The basic features are PLP projected
LDA and MLLT (global semi-tied covariance). Speaker adap-
n includes cepstral mean and variance normalization, VTLN,
LR and MLLR. The models are trained on VTLN-warped and
LR-transformed data.
We report experiments on a baseline diagonal system with
000 Gaussians, and a full-covariance system with 50000 Gaus-
s trained for two iterations with full-covariance Gaussians after
ing a diagonal system. The off-diagonal elements of the full-

ariance Gaussians are smoothed as proposed in [6] by multi-
ng them by c(m)/(c(m) + τ ) where c(m) is the count for the
ssian and τ is a constant set to 100.
In addition to the standard full-covariance models, in order to

e more than one experimental condition we also report results
an extended version of MLLR (XMLLR), described in a com-

ion paper [11]. The technique is very similar to ESAT [8], and
lves using mean vectors that are of a higher dimension than the



Speaker adaptation
None fMLLR fMLLR+MLLR fMLLR+MLLR(rtree)
20.4% 17.9% 17.7% 17.3%

Table 1: Baseline (diagonal, 100k Gaussians).

Speaker adaptation
Computation None fMLLR fMLLR+MLLR

Full 19.2% 16.8% 16.6%
Diag-cov 19.2% 16.7% 16.5%
Diag-prec 19.2% 17.0% 16.8%

Table 2: Full covariance (τ = 100), 100k Gaussians

feature vectors and projecting down in a speaker-specific fashion.
The MLLR computation is exactly analogous the normal compu-
tation, only with different dimensions of some of the quantities
involved. For experiments reported here the dimension of means
used in XMLLR is 80, compared to a feature dimension of 40.

8. Experimental results

Table 1 shows the baseline performance of the system with and
without fMPE [7] and MPE [9]. The last column shows the ex-
tra 0.4% to be gained from regression tree MLLR, which has not
been implemented in the full covariance case; however, there is no
reason why it should not work.

Table 2 shows the effect of the different kinds of fMLLR and
MLLR computation (exact; pretending the variances are diagonal;
pretending the precisions are diagonal) on a full covariance sys-
tem. The differences are quite small, so in order to get a better
idea whether there are any consistent differences we also test on
two different setups. Table 3 is the result on a full covariance sys-
tem with no smoothing of the variances (τ = 0) and decoding
without word-boundary information (the result of an error). The
third setup, Table 4, is with XMLLR [11] in which the mean vec-
tors have a larger dimension than the feature vectors.

Looking over all three setups, we find that in general the exact
computation is best, and that the computation where we pretend
the precisions are diagonal (as done for MLLR in [2]) is always the
worst. This effect seems to appear at the fMLLR level. We were
told [3] that the approach of pretending the precisions are diagonal
was attempted for the fMLLR case in work reported in [2] but led
to poor results. We do notice that in the diagonal-covariance case
the log determinant of the fMLLR matrix A

(s) is somewhat larger
than the exact case (e.g., a difference of 2) but in the diagonal-
precision case the log determinant is much smaller (e.g. a dif-
ference of -6). It may be possible to devise some approach that
overcomes these systematic biases.

Speaker adaptation
Computation fMLLR fMLLR+MLLR

Full 18.6% 18.2%
Diag-cov 18.5% 18.4%
Diag-prec 18.7% 18.4%

Table 3: Full covariance (τ = 0), no word-boundary, 100k Gaus-
sians
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Speaker adaptation/training iteration
fMLLR fMLLR+MLLR

mputation 1 2 1 2
Full 16.9% 16.8% 16.4% 16.1%

Diag-cov 16.9% 16.9% 16.4% 16.3%
iag-prec 17.3% 17.1% 16.8% 16.6%

le 4: Full covariance (τ = 100), XMLLR (D = 80), 50k
ssians, no word-boundary, 100k Gaussians

9. Conclusions
have presented a reasonably efficient exact method to compute
LR and MLLR adaptation matrices for full covariance Gaus-
s, and have compared it with some approximate approaches.
have demonstrated experimentally that our exact method gives
onable improvements, and have shown that we can generally
most of the improvement by using the diagonal of the Gaussian
ariances to reduce it to the diagonal case.
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