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Abstract

In this paper we describe our approach to building dialog con-
text sensitive language models for improving the recognition per-
formance in spoken dialog systems. These methods were devel-
oped and successfully tested in the context of a large-scale com-
mercially deployed system that takes in over ten million calls each
month. Dialog sensitive language models are typically built by
clustering dialog histories into groups that elicit similar responses.
A key innovation in this paper is to use an EM clustering procedure
in lieu of a k-means clustering procedure that is typically used.
The EM procedure results in clusters with higher log-probability
which we argue leads to better recognition performance. Addi-
tionally, we empirically observe that the EM approach has much
better worst case behavior than the k-means approach as it pertains
to local optima.

1. Introduction
In spoken dialog systems, dialog states often use n-gram models or
finite state grammars (FSG) as prior models of user input expected
at those states. These language models are typically specific to the
dialog state for which they are used, and are often derived based on
the user interaction with that state. It has also been shown [1, 2, 3]
that making the language model for a dialog state dependent on
the user interaction (dialog context) leading up to that state results
in improvement in recognition accuracy.

In this paper we describe our approach to building dialog con-
text sensitive language models. These methods were developed
and successfully tested in the context of a large-scale (over ten mil-
lion calls each month) commerically deployed call-routing system
shown in Figure 1 and described later.

When building such dialog context dependent language mod-
els for a state, ideally we would like to build a separate one for
each distinct history leading up to that state. However, except in
trivial dialog systems, or with trivial definitions of dialog history,
we would neither have data nor computational resources to do that.
Consequently, the dialog histories are clustered into groups that
elicit similar user responses [1, 3]. One language model is then
built for each cluster and used for recognition.

One approach for partitioning dialog histories, tried by Bechet
et.al. [1], is to build a decision tree by asking questions about the
history constituents and selecting the optimal question under some
objective function. The advantage of using this approach is that
the resulting trees can immediately handle unseen histories, and if
the questions are well designed they have very good generaliza-
tion properties. However, the requirement of a question set is a
limitation of this approach.

An alternative partitioning approach, proposed by Chou [4,
5] builds a tree by directly optimizing the objective function at
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split. A k-means clustering like algorithm is used to derive
optimal split. This approach has previously been applied for
ding dialog history dependent language models [1, 3]. The

advantage of using this approach is that it is not restricted by
e-specified question set. However, one of its disadvantages is
it does not immediately handle unseen histories, and another
dvantage is that the k-means procedure is susceptible to local
ma.
To try to alleviate the local optima problem of k-means clus-
g, in this paper we propose use of EM clustering [6, 7] to

ve the optimal dialog history partitioning tree. It still does not
ess the problem of handling unseen histories, but that was not
ncern for us.
The rest of the paper is organized as follows. We first describe
istory partitioning problem and describe the k-means and EM

tering procedures that attempt to achieve optimal partitioning.
then describe our experimental setup, followed by a descrip-
of our results and discussion.

. K-Means and EM Clustering for Dialog
History Partitioning

his section we formally state the dialog history partitioning
lem and describe the k-means and EM procedures that attempt
hieve optimal partitioning.
Let Q denote the dialog state for which we wish to build his-
cluster dependent n-gram language model or stochastic fi-
state grammar. Let H = H−1H−2H−3...H−n denote dia-
history of Q, as a collection of categorical variables Hi, i =
..,−n. For example, H−1 could be the identity of the dialog
encountered just before Q, H−2 could be the recognition out-

at state H−1, etc. We shall call Hi component or constituent
ables of dialog history. An instance h of H denotes a particular
ry for Q.

Let H = {h1, h2, ..., hm} be the collection of all distinct his-
s of state Q that are observed in the training data set. Associ-
with each history h ∈ H is a set of sentences (word strings),
ained in the training set, that were spoken in context of that di-
history. In practice, this sentence set could be obtained either
anually transcribing the spoken utterances or from the output

n ASR system.
Given a subset l ⊂ H of histories, the bigram model obtained

the counts of the bigrams in l is

f(w2|w1, l) =

P
h∈l c(w1w2|h)P

h∈l

P
w2

c(w1w2|h)
(1)

re c(w1w2|h) is the count of bigram w1w2 obtained from sen-
es associated with h. We shall also use f(|l) to denote the
am of Equation 1.
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The log-probability of data belonging to h, under the bigram
for l (Eqaution 1) is

L(h|f(|l)) =
X

w1w2∈h

c(w1w2|h)logf(w2|w1, l), (2)

and the total log-probability of data belonging to l is

L(l) =
X

h∈l

L(h|f(|l)). (3)

The objective of partitioning algorithms is to find a partition
P of H so as to maximize total log-probability

X

l∈P

L(l) (4)

We note that instead of using bigram counts and probabilities,
we could have used unigram, trigram, sentence counts, or some
other suitable model. Our choice of using bigrams is largely ar-
bitrary, it is motivated by our intuition that this would provide a
good model and alleviate data sparsity problem.

We follow greedy top-down partitioning procedures where a
binary tree is built by iteratively finding optimal binary splits (with
largest log-probability gain) of tree nodes.

The tree growing process is stopped when the log-probability
gain from a split falls below a threshold, or when the count of sen-
tences (associated with histories) after split falls below a threshold.

2.1. K-means Clustering

We now briefly describe our k-means procedure (similar to the
ones used in [1, 3] that attempts to maximize the log-probability
of a tree node split. Given a node (set of histories) l to be split in
two, the procedure is

1. randomly split l into two sets lA and lB

2. build bigram models f(|lA) and f(|lB) (Equation 1)

3. create two new empty sets lAnew and lBnew

4. for each h ∈ l, place h in lAnew if L(h|f(|lA)) ≥
L(h|f(|lB)), otherwise place h in lBnew .

5. if lAnew is same as lA stop. Otherwise assign lA = lAnew

and lB = lBnew and go to step 2.

Smoothing
Due to the possiblity of c(w1w2|h) = 0, it is important to

smooth the history bigram counts. We consider a simple form of
smoothing whereby bigram counts for h ∈ l are augmented as

cnew(w1w2|h) = c(w1w2|h) +
α

|l|
X

h′∈l

c(w1w2|h′) (5)

where α is a smoothing parameter, and |l| is the size of set l.
An alternative to smoothing the history counts is to use the

Gini index, as discussed in [5, 4]. We experimented with both
these methods of avoiding the 0-count problem.

Initialization
To derive the initial random partition of l into lA and lB, we

consider two methods. In the first method, each history belong-
ing to l is placed in lA if the outcome of a uniform (0,1) random
variable is less than 0.5, in lB otherwise.

In the second initialization method, we first obtain two bi-
gram models, fA and fB, by randomly perturbing the bigram
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el f(|l). Each history in l is then placed in lA if L(h|fA) >
|fB), otherwise it is placed in lB.
We experimented with both these initialization procedures; re-
from these experiments are presented in Section 4.

EM Clustering

EM clustering of dialog histories that we propose works as
ws.
Given a set of histories (tree node) l to be split in two

. randomly perturb f(|l) to create two initial bigram distri-
butions fA and fB. Initialize LL = −Inf .

. create two new empty sets lAnew and lBnew . Set
LLnew = 0.0

. foreach h ∈ l, find

p(A|h) =
eL(h|fA)

eL(h|fA) + eL(h|fB)
(6)

p(B|h) = 1.0 − p(A|h) (7)

LLnew = LLnew + log(eL(h|fA) + eL(h|fB)) (8)

. If LLnew − LL < threshold, stop.

. multiply bigram counts of h by p(A|h) and assign to lAnew

and multiply bigram counts of h by p(B|h) and assign to
lBnew

. assign fA = f(|lAnew), fB = f(|lBnew), and LL =
LLnew . go to Step 2.

For EM clustering algorithm also we used the smoothing pro-
re of Equation 5.

3. System Description
dialog system we consider is shown in Figure 1. This is a call
ing application that attempts to direct customer calls to IVR
ications or customer service agents. The application starts
n “open-ended” state, labeled S1 that prompts users to state

request. This state uses an N-gram based statistical language
el for recognition. User utterance is processed by an ASR en-
and the recognition output is assigned a semantic label that

rmines the next dialog action. In Figure 1, list-choices is a
antic interpretation.
If the users have trouble using the system at S1, or if they
the system to list their choices, it takes them to a “directed-
g” state, labeled S2, which lists some of the choices available
e user. This state uses a stochastic finite state grammar for
gnition. As with state S1, each recognition output at S2 is
ned a semantic interpretation that determines the next dialog
n. There is also a “Confirmation” state that uses a finite state
mar containing various ways of saying “yes” and “no.”

Some example user utterances at S2 and corresponding dialog
ries (H−1 H−2 H−3 H−4) are

e options list-choices S1 φ φ
ator <no-speech> S1 <no-speech> S1
account balance more-options S2 list-choices S1
rmation <mumble> S1 <noise> S1
-speech> list-choices S1 φ φ

The histories are read right-to-left; for example, in the third
above the user started at S1, asked for “list-choices,” went
2, asked for “more-options,” reached S2 again, and said “my
unt balance.” φ indicates a null value for Hi.



more −options

S2
(FSG)

S1
(n−gram LM)

Confirmation

<low−
confidence>

CALLBEGIN

TARGETS

TARGETS

no

yes

use−S1>
<unable−to−

TARGETS

list−choices

Figure 1: The call-routing dialog system considered in this paper.

4. Experiments & Results
4.1. Data Sets

From the dialog system of Figure 1, we collected 19972 instances
of user interaction with state S2. For each of these instances, we
also kept a detailed record of user interaction with the dialog sys-
tem leading up to state S2. The utterances that the user spoke at
state S2 were manually transcribed.

The 19972 instances were divided into two sets - a training set
containing 16943 instances and a test set containing the remaining
3029 instences. All our experiments are results reported here are
based on these two data sets.

4.2. Selecting Dialog History Components

Our first step was to decide what components to include in the
dialog history. Keeping dialog state label and semantic interpre-
tations for all dialog states in the history, as shown in example in
Section 3, resulted in 666 unique histories for our training set; an
average of about 25 instances for each history. We decided this to
be too sparse and chose to use only the previous state label and
semantic interpretation at that state as components of the dialog
history. This choice resulted in 40 unique histories with an aver-
age of about 423 interaction instances for each history.

4.3. Comparing K-means and EM Clustering

To compare effectiveness of k-means and EM in clustering dialog
histories, we first measured the log-probability gain obtained in
splitting the training set (root node of the tree) into two clusters.

Figure 2 shows the log-probability gain of EM clustering pro-
cedure and of two different initializations of k-means - random
split based initialization labeled “k-means 1” in the figure, and
model perturbation based initialization labeled “k-means 2” in the
figure. Each point on this plot is obtained by taking the average
of log-probabilities gains over 100 random runs. The flat line on
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re 2: Log-probability gain of k-means and EM clustering, as
nction of smoothing parameter α.

mean max num max min
gain gain gain gain

k-means 1 3852.42 6907.76 16 1260.50
k-means 2 4028.27 6907.76 7 1688.30
EM 5688.91 6907.76 45 2271.90

Table 1: Comparion of k-means and EM clustering.

op marks the maximum log-probability gain achieved among
lustering runs for all smoothing parameters and initializations.
represents our approximation for the global maxima as get-

the true global maxima would be computationally prohibitive.
From Figure 2 we note that on average EM clustering results
gnificantly higher log-probability gain as compared to either
alizations of k-means clustering.
The mean value of log-probability gain for Gini index based
eans was 3231.27 which is significantly worse than the count
d smoothing.
To gain further insight into how often k-means and EM
eve high log-probability gains, we looked at their 100 runs for
othing weight of 0.5 and computed the maximum and min-
m gain achieved, and number of times maximum gain was
eved. These results are presented in Table 1.
From the results in Table 1 we note that the maximum gains
eved by the k-means and EM clustering procedures are identi-
therefore, if either procedure is run enough number of times
random initializations, similar results can be obtained. How-

, in any given run, the EM clustering appears to have a much
er chance of attaining the maximum value. Furthermore, the
st local optima that k-means procedure got caught in was sig-
antly worse than the worst local optima that the EM clustering
caught in.

Building Trees

e next set of experiments we built binary trees using k-means
EM clustering. To prevent the trees from getting very deep,



mean max min
gain gain gain

k-means 1 11935.1 12569.3 10124.8
k-means 2 11927.4 12555.8 10361.0
EM 12213.0 12586.4 11178.9

Table 2: Results of tree building experiments

a minimum log-probability gain of 400.0 and a minimum instance
count of 1000 for resulting nodes was required from each split.

Table 2 presents the results of the tree building procedure us-
ing k-means and EM clustering. As with Table 1, these numbers
are based on 100 tree building runs with random initializations.

From these results, the two procedures appear closer than they
did based on their performance at splitting the root node (Table 1);
however, the overall trends of EM having better average gain and
better local optima property (the min gain is higher for EM as com-
pared to other two procedures) are still clearly there.

4.5. Speech Recognition with Context Sensitive Grammars

As our final set of experiments we evaluated the impact of log-
probability gain on recognition accuracy on the held out test set.

Ideally, to compare EM and k-means clustering trees for their
recognition performance, we would like to carry out recognition
with all the trees built using these procedures. However, that was
not computationally feasible at the moment, hence we selected 5
trees built in Section 4.4 that had log-probability gains ranging
from minimum gain of 10124.8 to maximum gain of 12586.4 (cf.
Table 2). For each of these trees, context sensitive grammars were
built using data from leaf nodes of these trees and at test time each
utterance was recognized using the grammar appropriate for the
context specified by the dialog history of that utterance.

Table 3 shows the word and sentence error rates resulting from
use of these five different trees. It also shows the baseline word
and sentence error rate with the non-context-sensitive grammar;
i.e. grammar built with data at root node of these trees.

baseline wer/ser : 25.89/32.72

log-prob gain wer/ser
10124.8 24.68/30.73
10699.3 24.64/30.67
11179.0 24.45/30.60
12123.5 24.44/30.57
12495.2 24.37/30.57

Table 3: Recognition word and sentence error rates using trees
with different log-probability gains

From Table 3 we first note that the use of context sensitive
grammars results in a significant gain in word and sentence er-
ror rates over the baseline. Furthermore, the log-probability gain
obtained in tree building procedure appears to be fairly directly
correlated with the recognition accuracy, but the improvement in
accuracy with increased tree log-probability is relatively small.

The observation that trees with higher log-probability result in
higher recognition accuracy, combined with the observation that
EM clustering on-average results in higher log-probability gains as
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pared to k-means and also has a much higher chance of achiev-
optimal log-probability, argues for use of EM as the clustering
edure of choice. This is especially true in cases where one
n’t have the liberty of trying many random initializations.

5. Conclusions & Future Work
evaluated use of EM clustering procedure for building dialog
ext sensitive stochastic FSGs for a large scale commercially
oyed system. In particular, we contrasted it with a previously

k-means like clustering procedure. Our experiments sug-
that using EM for clustering results in partitions with higher

probability on average, has better local optima properties, and
ld be expected to result in trees that have a higher recognition
racy as compared to the k-means based clustering procedure.
All of the clustering experiments reported in this paper are
ied out with manually transcribed data. One of the future di-
ons that we are pursuing is unsupervised clustering and con-
sensitive model building, as that will allow us to use orders of
nitude more data and will hopefully result in more robust and
e accurate models.
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