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Abstract
The Christiansen model of word segmentation [1] is a connection-
ist framework for modeling how infants combine multiple cues
in learning and processing language. Most studies applying this
model assume idealized input with adult-like representations of
phonemes and features, with little or no degradation of the input
signal. From these studies, it is difficult to tell if the model is
robust to non-idealized, noisy input, which may correspond more
closely to an infant language-learner’s experience.

This study tests the robustness of the Christiansen model by
providing input from a minimally-trained phone recognizer on
infant-directed speech. Some degradation of performance is ob-
served, but the model still performs above chance. This finding
represents a first step in developing more realistic input represen-
tations for models of child language acquisition.
Index Terms: word segmentation, child-directed speech (CDS),
computational models of language acquisition

1. Introduction
The acquisition of a language is an immense task. Not only are
languages complex and greatly varied, but much of the structure
underlying language competence cannot be observed directly, but
must be inferred from indirect cues. An example of linguistic
structure only indirectly observed is that of the organization of
speech sounds into constituent units such as words or phrases.
Unlike written English, where the boundaries between words are
neatly marked by spaces, spoken language has no completely re-
liable cues for word boundaries. Even when an underlying vo-
cabulary of possible words is known (as for adult native speakers
or for most ASR systems), enough ambiguities arise to make the
problem non-trivial. For infants who must find the boundaries in
order to acquire the vocabulary in the first place, the task is much
harder. However, human speech, and particularly infant-directed
speech (IDS), contains a number of statistical cues which point to
these boundaries. No single cue is perfect, but when taken together
the cues reinforce each other and narrow the search space to man-
ageable proportions. (See e.g. [2, 3] for reviews of experimental
findings.)

A number of earlier models of the word segmentation task fo-
cused on understanding the role of single, specific cues (see [4]
for a review). In contrast, the model proposed in [1] focuses on
the interaction between different cues—specifically, distributional
information over the segments, utterance boundaries, and lexical
stress. This paper examines the Christiansen model’s performance
on input derived from actual IDS recordings, passed through a
minimally-trained phone recognition system.
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2. The Christiansen et al. (1998) model
er than approaching the detection of word boundaries directly,

istiansen et al. [1] differentiate between the primary task
rning the language), immediate tasks (updating one’s statisti-
knowledge of the language’s directly observable aspects), and
ved tasks (inferring the non-observable structure of the lan-
ge). Examples of immediate tasks include learning to predict
t sound will come next (see e.g. [5]) or how soon the current
rance will end [6].
Christiansen et al. [1] (henceforth CAS98) treat word segmen-
n as a derived task, and do not train their network on it directly.
er, they train an simple recurrent network (SRN) to learn three
ediate prediction tasks: the next phone’s identity, its level of

ss, and whether the utterance is about to end. In order to train
network to learn the relationships between these tasks, the net-
k is trained on the three tasks simultaneously. The network’s
d boundary predictions are derived from the activation level of
utterance boundary predictor. The results of this model on the
man corpus [7] are given in Table 1, below:

Training Boundary Word
Condition Prec. Rec. Prec. Rec.
phon-ubm-stress 70.16 73.71 42.71 44.87
phon-ubm 65.86 71.34 37.31 40.40
stress-ubm 40.91 87.69 8.41 18.02
utterances as words 100.00 32.95 30.79 10.15
pseudo-random 33.40 33.15 8.62 8.56

le 1: Percent precision and recall for the three nets in CAS98,
an algorithm that treats utterances as words, and for a pseudo-
om algorithm using mean word length (from [1], Table 3)

Limitations of the Christiansen et al. (1998) model

CAS98 model articulates a plausible explanation for how chil-
may combine cues of limited provenance in order to learn

d boundaries with greater accuracy than they could with any
le cue or heuristic. However, it has generally been tested with
n input, where observable cues used for detecting word bound-
s (i.e., phone identities, level of stress, and utterance boundary
tions) have been given to the system with a high degree of con-
nce and correctness. Their main study ([1]) assumes perfect ac-
cy and confidence. It transforms a word-level transcription of

mothers’ utterances into string of phones derived from the pro-
ciations of the words listed in the MRC lexicon. Each phone is
esented as a vector of binary phonological features, with each
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feature presented with an activation of either 0 or 1. Hence, any
variation in the actual speech signal below the level of the word is
abstracted away from the input presented to the SRN.

One reason for this abstraction was due to necessity: at the
time of their study, no phonetically-transcribed corpus of infant-
directed speech was available, and the sound recordings of such
corpora as the Korman corpus were too poor in quality to be us-
able. Nevertheless, a parallel study, [8] addresses the issue of nat-
ural variation in speech. This study uses as input the Carterette
Corpus [9], which provides phone-level transcription of speech be-
tween adults. Moreover, some small amount of artificial noise is
added to the activation levels of certain “peripheral” features of
each phone (defined as those features whose change would not
result in another phoneme found in the language). No phones
suffered deletion, insertion, or substitution with another canonical
phone except as recorded in the human-transcribed corpus.

Thus, [8] approximates the speech of adults as perceived by
trained transcribers. By adding another (albeit controlled and arti-
ficial) layer of random noise, it also deals to a limited degree with
the issue of variability in speech. It does not deal with the issue of
a child’s perception of speech. Rather, it assumes, as many studies
have done before, that children perceive speech as adults do, hear-
ing each phone in sequence as the speaker uttered it (or at least
as an adult transcriber heard it). Some (e.g., [10, 3]) have ques-
tioned this assumption. Unfortunately, since it is difficult to know
precisely what children do hear, the most that can be done in a sim-
ulation is another approximation. The current paper, while leaving
some questions of representation to future work, reports on an ap-
proximation of input that preserves much more of the variability
inherent to the speech signal that infants hear.

3. The Christiansen model on noisy data
In order to simplify comparisons with the original Christiansen
model, the simulations reported here maintain the assumption that
speech is represented as a string of segments drawn from the same
phonemic inventory as adults, and encoded with the same phono-
logical features. It does not, however, assume a uniform, canonical
mapping from word to features as in [1], nor a mapping posited by
adult transcribers as in [8]. Rather, it uses the output of an au-
tomatic phone recognizer. A similar approach was tested in [11],
who showed that his algorithm could yield interesting results even
very noisy input data. Since his simulations also were conducted
before high-quality sound recordings of IDS were available, he
had to conduct his studies on the TIMIT corpus, a commonly-used
corpus of read speech from various American English dialects.

3.1. Materials

Since the time of the previous studies, Brent and Siskind [12] have
developed and made available a new corpus to the CHILDES data-
bank [13] that includes downloadable sound files with word-level
transcriptions.1. The Brent corpus provides fourteen 90-minute
sessions for each of eight American English-speaking mothers liv-
ing in Baltimore who participated in the study, spaced at roughly
two week intervals at 8-14 months of the baby’s age. For each of
the mothers, the middle 75 minutes of the earliest sessions (typi-
cally three or four) were transcribed at the word level.

The mothers’ voices were recorded using portable DAT

1Available from http://childes.psy.cmu.edu/data/Eng-USA/brent.zip
(transcripts); http://childes.psy.cmu.edu/media/Eng-USA/Brent/ (sound).
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rders and lapel-mounted microphones placed on the mother.
recordings took place in the families’ home, in order to cap-
typical utterances of everyday life; in order to focus on speech
cted at the child, the mothers were asked to avoid phone con-
ations with other adults. The mothers’ utterances were defined
tretches of speech demarcated on either side by at least 300 ms
ilence; time stamps for utterance boundaries are marked in the
d-level transcriptions. (See [12] for more details.)
For the study reported here, three of the eight mothers’ voices
e used. In order to keep the input focused on as young as in-
s as possible, only the first few recordings from these mothers
e used. The very first recording for each dyad was excluded,
e the mother may have been more self-conscious due to the
elty of the microphone; recordings 2-5 from mothers “c1”,
, and “f2” were used. The infants ranged between 9 and 10
ths of age at the time of these recordings. These twelve ses-
s contain a total of 8285 utterances.
As with the Korman Corpus, no phone-based transcriptions
e available, so these had to be created. Two versions were
ted: a canonical reference transcription created in the same
ner as in [1], by replacing each word with the word’s canonical
unciation, and a noisy input created by a phone recognizer as
ribed below.

Method

rder to create the input for this simulation, the SONIC Speech
ognizer [14, 15] was used as the basis for a phone recognition
em. A version of the CMU dictionary adapted to the SONIC
ne set was used as base dictionary, and words in the transcripts
found in this dictionary were added to it, with the pronuncia-
checked off the original sound files as necessary. To form the
nical input, each instance of a given word was transcribed us-

the first pronunciation of the dictionary. These pronunciations
e then mapped from SONIC’s phone set to the 36-phone MRC
neset used in [1], to facilitate comparisons with that study.
To create the “noisy” input, each of the sound files was seg-
ted and resampled with a 8 kHz sampling rate. SONIC’s de-
t feature extraction system, Perceptual Minimum Variance Dis-
onless Response (PMVDR) cepstral coefficients [16], along
an off-the-shelf acoustic model for female speech was used.

adaptation or re-training of the acoustic model was done, ex-
for on-line adaptation. A triphone language model was used,

n from 90% of the utterances used in the study; however rel-
ely little weight was given to the model, under the assumption
the child would have only limited knowledge of transition fre-

ncies between phones, and would have to rely more on the raw
stics. Obviously, no dictionary was given to the recognizer, as
would defeat the purpose of the pre-lexical word segmentation
(which of course is to find the word boundaries so as to facil-
the acquisition of a lexicon). In place of a dictionary, SONIC
given the same 55-to-36 phone mapping that was used for the
nical phones, with each of the 36 phones treated as a word

y. Settings were adjusted to produce roughly as many phone
rtions as phone deletions.
Due to occasional lapses in recording quality (most likely due
ariation in the mother’s volume, head position, background
e, and other factors incident to out-of-studio recordings), cer-
utterances failed to be recognized by SONIC (which gave

er null output or recognized a single non-continuous, non-
rant phone like [t]). Such utterances were excluded from both

canonical and noisy input sets. Of the 8285 utterances, 992



were excluded, leaving 7293 utterances.
Even with these problematic utterances removed, recognition

was, as may be expected, extremely noisy: the correctness mea-
sure was 43% and the accuracy was 23%. As a result of this noise,
each of the 1576 word types in the canonical input had on aver-
age five different “noisy” realizations. Naturally, such noisy in-
put makes for a very demanding test of any word segmentation
model’s abilities. It may serve more as a lower bound of what we
might reasonably expect from a given model. We would expect
the model’s true performance to fall somewhere between the noisy
and the canonical trials tested here.

Both the noisy and canonical input sets were divided 90%-
10% into training and test sets, with 6564 utterances in the training
set and 729 utterances in the test set. The canonical sets had 77952
and 8903 segments in the training and test sets, respectively; the
noisy sets 77303 and 8866 segments. All utterance-internal pauses
were deleted from both the canonical and noisy input strings, and
a pause symbol was inserted if missing at the end of each utterance
(symbolizing the 300ms pause after the end of the sound file).

In evaluating performance of the word segmentation model
for the case of noisy input, one may wonder where word bound-
aries ought to be placed in the gold standard. For this study, the
noisy transcriptions were previously aligned with the correspond-
ing canonical transcriptions for those same utterances in order to
evaluate the performance of the recognizer. These same align-
ments were used to assign the gold-standard word boundaries for
the noisy transcriptions. In each noisy transcription, a word bound-
ary was placed before each segment aligned with a word-initial
segment in the canonical transcription of that utterance.

3.3. Training and testing the model

Two versions of the CAS98 model were trained and tested: the
original 1998 version, which encoded the MRC phoneset into a
vector of binary 11 phonological features, and a slightly modified
version referenced in [17], using 17 features which are arguably
more in line with those used in theoretical phonology. Stress in-
formation was not included in this study; methods of automatically
detecting stress (or equivalent) information from the acoustic sig-
nal (and learning the role it plays) is left for future work. Hence,
the most appropriate comparison to CAS98 is the phon-ubm con-
dition rather than the phon-ubm-stress condition.

As with the models in [1, 17], the SRNs were trained to predict
the upcoming phone’s identity rather than its features; hence each
SRN has 37 output units (one for each phone plus one for the ut-
terance boundary symbol). Eighty hidden units and eighty context
units were used. Since the utterance boundary symbol also has its
own separate input node, the 11-feature model results in a 12-80-
37 SRN, and the 17-feature model in an 18-80-37 SRN. Each of
the two variant models was trained on one iteration of the train-
ing corpus, and then tested on the test corpus. Five iterations of
training and testing were performed (with different initial starting
weights), and the results of the iterations averaged, on each of the
two transcriptions (canonical and noisy).

4. Results
4.1. Activation levels

As mentioned above, the CAS98 model works by training the net
on clearly observable utterance boundaries while simultaneously
performing a phoneme-prediction task, and relies on it to general-
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the activation for the utterance boundary output unit to word
ndaries as well. Hence, a higher average activation on word
ndaries (both utterance medial and utterance final) relative to
d-internal positions indicates the SRN’s ability to learn this
eralization. As in [1], the SRNs successfully learned both to
ict upcoming utterance boundaries and to generalize this pre-

ion to utterance-internal word boundaries. The average acti-
ons for word-medial, word-final, and utterance-final positions
shown in Table 2.

aining Avg. Activation
ndition Word-medial Word-final Utt-final

non-11 0.024 0.080 0.123
non-17 0.027 0.093 0.125
isy-11 0.032 0.082 0.120
isy-17 0.035 0.083 0.119

le 2: Average activations for the four nets trained with the ut-
nce boundary cue

One-tailed t-tests on the four sets of five iterations show the
age activation of the utterance boundary unit is significantly
er in word word-boundary positions than in word-medial po-
ns (p < 0.001).

Boundary detection and word extraction

rder to translate these continuous activation levels into boolean
ndary predictions, it is necessary to set a threshold on the acti-
on. In this section, we follow [1], in positing the mean activa-
level over all segments as the threshold. Any activation above
mean is treated as a posited word boundary.
A more crucial measure of a word-boundary detector’s abil-
o help with vocabulary acquisition is its ability to find words
in the running speech. This requires a higher level of accuracy
mere boundary detection: in order to successfully segment an

ance of a word, the learner must find both the initial and final
ndaries of the word, and refrain from any false-positive bound-
s within the word. Precision and recall measures for both of
ndaries and words are shown in Table 3.

Training Boundary Word
Condition Prec. Rec. Prec. Rec.
canon-11 53.28 57.56 20.18 21.92
canon-17 57.66 66.34 25.20 29.00
noisy-11 46.36 54.30 14.56 17.04
noisy-17 44.16 62.30 13.48 18.98

le 3: Percent precision and recall for the four nets trained with
utterance boundary cue (as in Table 1) over the subset of the
nt Corpus

Clearly, the models trained on noisy transcriptions do not per-
as well as those with the canonical transcriptions. For the

nical transcriptions, the larger, linguistically better-motivated
eature set performs better, but for the noisy condition, repre-
ation seems to make little if any difference.
As Table 3 shows, the models here (and particularly those
ed on the noisy transcriptions) suffer from over-segmentation
to too-low thresholds. Accordingly, the results are supple-
ted with percentage figure for the AUROC (area under the

curve). For these measures, an AUROC of 0.5 would be
cted for at-chance performance.



As with the figures above, once again the 17-feature encod-
ing of the canonical transcription performs the best, with an AU-
ROC of 0.832. The 11-feature canonical transcription had an AU-
ROC of 0.778, and the two noisy inputs had AUROCs of 0.7338
(11-feature) and 0.7376 (17-feature). The differences between the
canonical and noisy representations are significant (two-tailed t-
test: p < 0.005), as is the difference between the 11- and 17-
feature canonical inputs (p = 0.00506).

5. Discussion
As stated above, the noisy output from the SONIC-based phone
recognizer is exceedingly noisy, and as such may be said to repre-
sent a lower bound on what children would be expected to recog-
nize, insofar as the assumption holds that they have access to the
same phonological representations as adults (or linguists). Hence,
in spite of the significantly degraded performance of the SRNs on
noisy input, the fact that it is still able to learn at all is encouraging.
It is quite possible that the cue of lexical stress (or rather, its acous-
tic counterparts), which was not examined here, may prove even
more of a crucial aid to word segmentation in when the phonolog-
ical input is noisy than when it is clean (as in [1]). This question
will have to remain for future study.

6. Conclusions and future work
The CAS98 model provides one example of a connectionist ap-
proach to the word segmentation task faced by infants at early pre-
lexical stages of language acquisition. It addresses an interesting
question relevant to psycholinguistic studies of the word segmen-
tation task: the integration of multiple cues such as lexical stress,
transitional probabilities over segments, and word boundary infor-
mation, all known from psycholinguistic experimentation to play
a role in infants’ detection of word boundaries.

However, until now it, along with many studies, have finessed
to a greater or lesser degree the issue of the lower-level input on
which the model rests. This present study constitutes one step in
bridging the gap between raw acoustic input and the input repre-
sentation usually assumed. The results for the noisy input condi-
tion are noticeably worse than those for canonical, idealized in-
put. However, they still manages to learn to generalize utterance
boundary information to word boundaries (as shown by the differ-
ence in mean activation level and the AUROC measures), suggest-
ing that the SRN does not degrade catastrophically even in the face
of exceptionally noisy input.

This work represents a stage in on-going work to relax the cur-
rent assumptions governing connectionist models of the word seg-
mentation task and extending them to qualitatively different mod-
els of the acoustic input available to infants. Future steps include
developing methods of automatically extracting acoustic correlates
of lexical stress, as well as phonological features and utterance
boundaries from these audio files. Later steps include combining
the CAS98 model with unsupervised methods of acquiring phone-
mic inventories from the sound signal in order to have a model of
language acquisition truly from the ground up.

7. References
[1] Morten Christiansen, Joseph Allen, and Mark Seidenberg,

“Learning to segment speech using multiple cues: A connec-
tionist model,” Language and Cognitive Processes, vol. 13
(2/3), pp. 221–268, 1998.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

INTERSPEECH 2006 - ICSLP

1410
Peter W. Jusczyk, “How infants begin to extract words from
speech,” Trends in Cognitive Sciences, vol. 3, no. 9, pp. 323–
328, September 1999.

Janet F. Werker and Suzanne Curtin, “Primir: A develop-
mental framework of infant speech processing,” Language
Learning and Development, vol. 1(2), pp. 197–234, 2005.

Michael R. Brent, “Speech segmentation and word discov-
ery: A computational perspective,” Trends in Cognitive Sci-
ences, vol. 3 (8), pp. 294–301, 1999.

Jenny R. Saffran, Richard N. Aslin, and Elissa L. Newport,
“Statistical cues in language acquisition: Word segmentation
by infants,” in Proceedings of the 18th Annual Conference of
the Cognitive Science Society, G.W. Cottrell, Ed., Hillsdale,
NJ, 1996, pp. 376–380, Lawrence Erlbaum Associates.

Richard N. Aslin, Julide Z. Woodward, Nicholas P. LaMen-
dola, and Thomas G. Bever, “Models of word segmentation
in fluent maternal speech to infants,” pp. 117–134. Lawrence
Erlbaum Associates, Mahwah, NJ, 1996.

Myron Korman, “Adaptive aspects of maternal vocalizations
in differing contexts at ten weeks,” First Language, vol. 5,
pp. 44–45, 1984.

Morten H. Christiansen and Joseph Allen, “Coping with
variation in speech segmentation,” in Proceedings of GALA,
A. Sorace, C. Heycock, and R. Shillcock, Eds., 1997.

E. C. Carterette and M. H. Jones, Informal Speech: Alpha-
betic and Phonemic texts with statistical analyses and tables,
University of California Press, Berkeley, CA, 1974.

Mary E. Beckman and Jan Edwards, “The ontogeny of
phonological categories and the primacy of lexical learning
in linguistic development,” Child Development, vol. 71, no.
1, pp. 240–249, 2000.

Carl G. de Marcken, Unsupervised language acquisition,
Ph.D. thesis, MIT, Cambridge, MA., 1996.

Michael R. Brent and Jeffrey M. Siskind, “The role of ex-
posure to isolated words in early vocabulary development,”
Cognition, vol. 81, pp. 31–44, 2001.

Brian MacWhinney, The CHILDES project: Tools for ana-
lyzing talk, Erlbaum, Mahwah, NJ, 2000.

Bryan Pellom, “SONIC: The University of Colorado contin-
uous speech recognizer: Technical report TR-CSLR-2001-
01,” Tech. Rep., University of Colorado, March 2001.

Bryan Pellom and Kadri Hacioglu, “Recent improvements in
the CU SONIC ASR system noisy speech: The SPINE task,”
in Proceedings of IEEE International Conference Acoustics,
Speech, and Signal Processing (ICASSP), Hong Kong, April
2003.

Umit H. Yapanel and John H.L. Hansen, “A new perspective
on feature extraction for robust in-vehicle speech recogni-
tion,” in Proceedings of Eurospeech’03, Geneva, 2003.

Morten H. Christiansen, Christopher M. Conway, and
Suzanne Curtin, Multiple-Cue Integration in Language Ac-
quisition: A Connectionist Model of Speech Segmentation
and Rule-like Behavior, Hong Kong: City University of
Hong Kong Press, 2005.


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	No Other Manuscripts by the Author
	------------------------------

