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Abstract

In this work we investigate the use of a greedy training algorithm
for the dual Penalized Logistic Regression Machine (dPLRM), and
our target application is detection of broad class phonetic features.
The use of a greedy training algorithm is meant to alleviate the
infeasible memory and computational demands that arises during
the learning phase when the amount of training data increases. We
show that using only a subset of the training data, chosen in a
greedy manner, we can achieve as good as or better performance as
when using the full training set. We can also train dPLRMs using
data sets that are significantly larger than what our current compu-
tational resources can accommodate when using non-greedy ap-
proaches.

Index Terms: machine learning, greedy algorithms, feature detec-
tion

1. Introduction

Machine learning techniques are again becoming increasingly more
popular in the speech research community. Previous attempts of
creating hybrid systems using neural networks are well documented
(see [1]), but the performance never bested that of “traditional”
hidden Markov Model (HMM) based systems.

The new generation of machine learning algorithms are best
exemplified by the support vector machine (SVM), which is prob-
ably the best known example of what is often referred to as kernel
methods. Without describing the SVM in detail we want to empha-
size some of the strengths of this approach. The most attractive
property of the SVM is the convexity of the objective function,
which guarantees any existing optimum to be global. The SVM
also takes care of generalization since its objective function is a
weighted sum of empirical loss (training set performance) and a
regularization term constraining the complexity of the classifier or
regression function.

There are two main drawbacks to the original SVM. Presented
with a test example in the form of a feature vector, x, the SVM,
represented here by a function f(-), will classify the example into
one of two classes according to the sign of the evaluation f(x).
Although this works well for a simple classification task, the lack
of a probabilistic formulation makes the SVM hard to integrate in
a statistically based ASR system. Another drawback is the com-
putational complexity of the training, as well as testing, when the
amount of training data increases.

This work was done while T. A. Myrvoll was a visiting researcher at
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dPLRM solves the first problem by directly modeling the pos-
terior class probabilities given the observations, while still yield-
ing a convex optimization problem. On the other hand, the prob-
lem with the computational complexity is amplified as the dPLRM
does not automatically yield sparse solutions as is the case for
SVM. We address this problem by selecting which training obser-
vations to use in a greedy manner. The resulting algorithm will be
demonstrated on the problem of classifying broad class phonetic
features.

In the next sections we present the theory behind dPLRM and
demonstrate how it can be formulated in terms of reproducing ker-
nel Hilbert spaces. This is in turn used to formulate a greedy search
algorithm used to select a sparse subset of the training data.

2. dual Penalized Logistic Regression
Machines

The dPLRM was first proposed by Tanabe in [2, 3, 4], and has sub-
sequently been utilized for speaker identification in [5, 6]. In this
section we will give a brief presentation of dPLRM and the cor-
responding optimization techniques based on nonlinear conjugate
gradient descent [7].

2.1. Modeling the conditional class probability

Let x € R? be an observation vector and ¢; € C be one out of
a finite number of classes. Our goal is to find an approximation
to the posterior class probabilities {p(c;|x)}. In the plug-in-MAP
(PI-MAP) paradigm this is achieved through the use of Bayes the-
orem. The generative models {p(x|c; } are estimated, and any sub-
sequent decisions about which class ¢; is the most likely is based
on the relation
pleilx) o< p(x[ei)p(ei), 0]
where p(c;) is either a prior distribution of the classes or estimated
from occurrence counts.
The dPLRM models the conditional class probability directly
using a logistic function. Let us assume that we have a finite num-
ber of training examples,

{zn} = {(%Xn,yn)}, n € 1...N.

Again, x,, € R? and y,, € C. We also define a general similarity
measure between observations x as

k:RYx RY = R.

In general we will assume that k(-, -) is a Mercer-kernel [8], but
for now we can think of it as a simple inner product in R,

k(x,x") = (x,x').
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We can now define a class-dependent similarity measure be-
tween an observation x and the training observations {x,, } as

F(xled) = ai(n)k(xn,x). @

When embedding these similarity measures in a logistic function
we implicitly define set of functions parameterized by the parame-
ters {a;(n)}, wheren € 1... N and ¢ € 1...|C|. By optimizing
the parameters we can find the “closest” (in some for now unde-
fined sense) approximation to the conditional class probabilities

o Gxled)

~ =" 3
>, cc €D

pleilx) =

To avoid overtraining a regularization term, étr{PVK VT}, is
added to the negative log likelihood during the estimation phase.
Here K is the Gram matrix containing all kernel products, V' con-
tains the parameters «;(n) and I is a matrix with the observation
count per class on the diagonal. Clearly, the term can be inter-
preted as a Gaussian prior on the model parameters.

The parameter optimization is usually done using conjugate
gradient descent. Although this type of optimization technique is
infeasible in most cases where the parameter space is large, in the
case of the dPLRM the Hessian is very structured. This structure
simplifies the computations significantly and yields a very effec-
tive search. For details on the derivation of the conjugate gradient
descent algorithm for dPLRM, consult [2, 3, 4].

3. A greedy training scheme

The conjugate gradient descent referred to in the previous section
lets us train dPLRMs efficiently provided that there is an adequate
amount of system memory available. The problem is that the mem-
ory required increases quadratically with the number of training
examples, as is obvious from the dependence on the kernel prod-
uct matrix K. Intuitively, as the number of training examples in-
crease, we should be able to find a subset of the total data set that
is a good enough representation for our purposes. More formally,
given a set of NV training examples, pick out the M < N exam-
ples that best represent the training set in the sense of minimizing
the negative log posterior class probability of the total data.

Clearly a brute force approach is infeasible as it becomes a
combinatorial problem. In what follows we reformulate the dPLRM
to take advantage of the rich theory of reproducing kernel Hilbert
spaces (RKHS). We then use the greedy search approach presented
in [9] for use with clique selection in conditional random fields
(CRF).

3.1. An RKHS formulation of dPLRM

As defined in section 2.1 the training data are pairs z, = (Xn, Yn)-
We must first define some kernel,

E:(RYxC)x (R*xC) =R
on this pair, and the choice for this work is

E(z,2') =6y, 9 )k(x,x), 4)

where k : R? x R? — R is a Mercer kernel.
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It is well known that for a Mercer kernel k(-, -), functions of
the form

G =" ak(a,) (5)

form an inner product space induced by the following inner prod-
uct definition,

<I€(l‘, ')7k(1‘,7‘)>K = k(l‘7l‘,)7 (6)
and that its completion is a Hilbert space, H . Let us write our
dPLRM in terms of a function f € Hx,

ef (@:ci)

ZCJ' ec ef(xﬂcj)

The object function we want to minimize, the negative log poste-
rior probability of the training data plus a regularization term, can
now be written in form of a functional on H gk,

p(cil|x) = (7

N
L(f) ==Y f(n,yn) +1og Y /O 1| f]1x), (8)

n=1 cjeC

where Q : RT™ — R™ is a strictly increasing function.

Assume that we want to find the optimal function f* € H,
so that the functional in equation (8) is minimized. From [9] we
have the Representer Theorem for CRFs, which states that the so-
lution is of the form,

FO =" anle)k((x,¢5), ). ©)

n=1lc; eC

Clearly, plugging (9) into (7) gives us an equivalent formulation of
dPLRM.

It should be mentioned that the form of the dPLRM regular-
ization term, trace{T'V KV ™} is inconsistent with Q(|| f||x) (re-
member that V' together with K is a representation of f). This is
not a problem, however. Let g = f* + h, where h L f* liesin a
subspace orthogonal to the span of f*. Then the norm of g is

lgllz = 11715 + lIhll%,
and so clearly
QI M) < QS+ hllx) Vh € span(f7) "

The same holds true for the dPLRM regularization term, as the
orthogonality of f* and h implies that we can write

trace{TVKV"}
=trace{Dj+ Vy« K+ Vi } + trace{Th Vi, K Vi, 1,

which again shows that the minimizer is indeed f*.

3.2. Greedy search using the Gateaux derivative

In this section we will use the Gateaux derivative, or functional
gradient, to pick kernels from the full training set. The Gateaux
derivative of a functional L at f in the direction h is defined as,

B
5 L(f +eh) N (10)

We use this definition to pick a subset of the training data in the
following manner:
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1. Start with an empty function f = 0.

2. Until some convergence criteria is met:

(a) Calculate the Gateaux derivative at f in the direction
of every

hn(+) = (2, ) (11)

(b) Pick the h,, corresponding to the largest Gateaux deriva-
tive and add it to f.

(c) Optimize the kernel weights oy, (c;).
(d) Repeat

Let us now calculate the Gateaux derivative at f in the general
direction & for the functional in equation (8). We split our calcu-
lations into three parts — the terms corresponding to the numerator
and denominator of the logistic function, and the regularization
term. The numerator term yields the following,

&3 flen) + ch(zn)

n=1 e=0

12

which can be interpreted as the empirical expectation of h.
The Gateaux derivative corresponding to the denominator term
is,

N
0 . .
> log 3 el et
€
n=1

c; €C c—0

5 e hlm, g)ef 0 e ek
cc ef(xnvcj)"!‘éh(xn 7Cj)

N
ZC] € e=0

=30 3 bl ),
c; €C

n=1

13)

which we can interpret as the probabilistic expectation with respect
to the current model.

Finally we address the regularization term. We assume that f
and h have no kernels in common and model the additional terms
by augmenting the V' and K matrices (I is unaffected by this aug-
mentation),

V o= [VeW]

g
Kl KII .

The Gateaux derivative now becomes

=i
|

) - T
aitrace{l"VKV }

e=0

09 T P
= &Etrace{F(VKV +eVK'W (14)
+ WK'VT + EWK"WT))

e=0

=dtrace{TVK'W'}
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Putting these three terms together the final Gateaux derivative is,

%L(f—}-eh)

e=0
N N

=S hz) + 30 ple)h(xa,e) 1D

n=1 n=1 cj eC
+ dtrace{TVK'W"}

We have now formulated an approach to select an “optimal”
kernel in a greedy manner. The solution is still not entirely satisfy-
ing as we still have to calculate all the kernel products, k(z;, z;),
while searching through all of the observations in the training set.
In the next section we present a suboptimal approach that utilizes a
neighborhood graph to reduce the number of observations we need
to investigate.

3.3. Neighborhood search

A very simple, but nevertheless effective approach to localized
search is to create a graph from the training data using the k-
nearest neighbor (kNN) algorithm. Here we calculate the distances
in kernel space,

and use these distances to find the k closest observations to any x.
The idea is now the following, starting with an arbitrary ob-
servation, x:

1. Calculate the Gateaux derivative with respect to x and every
2’ € N(z), the neighborhood of z.

2. Choose the observation Z that had the largest corresponding
gradient. If £ = x we terminate the search and add Z to the
dPLRM and update the parameters. Otherwise we chose &
as our new node on the graph and returns to step 1.

Our hope is that observations whose corresponding kernels are
close in H also gives rise to gradients that are close. As our prob-
lem is a continuous one the main prerequisite for this idea to work
is that the observations are sufficiently close.

It should be mentioned that a KNN-based graph is not neces-
sarily the best option. In general we would like a sparse graph
representation of the Gram matrix K so that every point x can be
reached by a path from any point z’. It is not clear however how
this graph should be traversed, as the approach outlined earlier
would certainly be trapped in local minima very quickly.

Another open question is how one should rearrange the graph
as observations are removed. In this work we simply fully con-
nect the neighbors of the observations being removed to avoid a
disconnected graph. This is illustrated in figure 1.

Figure 1: The neighbors of a observation that is removed from the
graph is fully connected to avoid any breaking up of the graph.
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4. Experiments

In this section we presents experimental results on a simple pho-
netic feature detection problem. Although this problem has some
practical interest (see eg. [10]), our main purpose here is not to
create a world class detector, but rather to illustrate the viability of
the approach outlined in the previous sections.

‘We chose a subset of utterances from the TIMIT database [11],
and re-labeled the phoneme segments according to table 1. We
then extracted 25 millisecond (ms) segments every 10 ms and cal-
culated the log spectrum of each segment. This yielded a 200 di-
mensional feature vector every 10 ms. The vectors were labeled
according to which phoneme they belonged to.

Class Phonemes
stop b bel d del g gel p pel t tel k kel g dx

fricative | jhchsshfzzhthvdh

nasal mn ng en em eng nx

liquid Irwyhhhvel

vowel | iy ih eh ey ae aa aw ay ah ao oy

ow uh uw er axr ax-h ix ux ax

silence | h# pau epi

Table 1: Phonemes from the TIMIT database clustered according
to broad class phonetic features.

For our experiment we used 53874 training examples and 19489
for testing. The examples where picked across all the speakers in
the training and test subsets of TIMIT. We trained a baseline sys-
tem using all the training examples and use this for comparison
with the graph based algorithm

For the greedy training algorithm we added the training vec-
tors one at the time. To add several kernels at each step would
probably be a waste as the greedy algorithm most probably would
chose a set of very similar kernels. We used a simple polynomial
kernel of third order. Higher orders gave no significantly better
results in our initial test. The graph search algorithm used a kNN
with k& = 10. We also made sure that the graph was fully con-
nected. The results of our experiments are presented in figure 2

60

30 L L L L L L L L

Figure 2: Comparison between searching the full training set and
just a subset using a graph search algorithm for use with greedy
training of a dPLRM classifier.

The results show that the graph selection algorithm yields a
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performance that is comparable to that of the greedy dPLRM for-
mulation, while investigating only a small fraction of the available
training data. This is very encouraging for the further development
of this approach, as speech data usually consists of large amounts
of data. The performance on the test data was almost the same as
on the training data. This is of course not something one should
expect in general, but in this case the simplicity of the classifier in
terms of using only ten training vectors makes this result possible.
Note that we are not even covering every speaker in the training
set. No results could be presented on the regular dPLRM approach
since the number of training vectors made this infeasible.

5. Conclusion

We have shown that using a graph search combined with a greedy
learning algorithm for dPLRM training let us train a kernel classi-
fier using a large number of training examples. We are now in a
position to investigate different kernels, and combinations of those,
in whatever setting we are interested in. It is not clear how large
datasets we can handle with the approach outlined in this paper,
but that is a topic of further research.
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