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Abstract
This paper describes the voice conversion based on the Mixtures
of Factor Analyzers (MFA) which can provide an efficient model-
ing with a limited amount of training data. As a typical spectral
conversion method, a mapping algorithm based on the Gaussian
Mixture Model (GMM) has been proposed. In this method two
kinds of covariance matrix structures are often used : the diago-
nal and full covariance matrices. GMM with diagonal covariance
matrices requires a large number of mixture components for accu-
rately estimating spectral features. On the other hand, GMM with
full covariance matrices needs sufficient training data to estimate
model parameters. In order to cope with these problems, we apply
MFA to voice conversion. MFA can be regarded as intermediate
model between GMM with diagonal covariance and with full co-
variance. Experimental results show that MFA can improve the
conversion accuracy compared with the conventional GMM.

Index Terms: voice conversion, GMM (Gaussian Mixture
Model), MFA (Mixtures of Factor Analyzers)

1. Introduction
Voice conversion is a potential technique for flexibly synthesizing
various types of speech. This technique can modify speech charac-
teristics using conversion rules statistically extracted from a small
amount of training data. As a typical spectral conversion method, a
mapping algorithm based on the Gaussian Mixture Model (GMM)
has been proposed [1]. In this method, the mapping between spec-
tral features of the source and target is determined based on GMM.
In each mixture component, the conditional mean vector of target
features given source features is calculated as a simple linear trans-
formation using the covariance matrix of the concatenated feature
vector. The converted vector is defined as the weighted sum of the
conditional mean vectors, and the conditional occupancy proba-
bilities of mixture components are used as weights. More accurate
formularization of spectral conversion based on ML (Maximum
Likelihood) criterion has been presented [2]. In the GMM-based
techniques, it is important to determine the optimal number of mix-
tures and the structure of the covariance matrices. Typically two
kinds of covariance matrices are used for training GMM: the di-
agonal and full covariance matrices. Although the diagonal co-
variance can reduce the number of parameters of each component
, a large number of mixture components is required for accurate
spectral estimation. On the other hand, full covariance matrices
can represent the correlation between the source and target features
with a few mixture components. However, it needs sufficient train-
ing data to estimate model parameters. In order to cope with these
problems, we apply the Mixtures of Factor Analyzers (MFA) to
the GMM-based voice conversion method. MFA can be regarded
as intermediate model between GMM with diagonal and with full
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riance matrices, and it provides an efficient modeling with a
ted amount of training data.
The paper is organized as follows. Section 2 explains the voice
ersion technique based on GMM. Section 3 describes the gen-
formulation of MFA, and the voice conversion based on MFA.
erimental results are reported in Section 4. Finally, conclu-
s and future works are given in Section 5.

2. Voice Conversion Based on GMM
onvert spectral features of a source speaker X to a target
ker Y , the joint probability density of two speaker’s features

modeled by GMM [3]. Let a vector Zt =
ˆ
X�

t , Y �
t

˜�
be

int feature vector of the source one X t and the target one
at time t. In the GMM-based voice conversion, the vec-
equence Z =

ˆ
Z�

1 , Z�
2 , . . . , Z�

T

˜�
is modeled by GMM

{wi, μi,Σi | i = 1, 2, . . . , M} . The output probability of
iven GMM λ can be written as follows:
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re M is the number of mixtures, wi is the mixture weight of
i-th component, μ and Σ is the mean vector and covariance
ix, respectively.

Maximum likelihood spectral conversion

the maximum likelihood spectral conversion, the op-
l sequence of the target feature vectors Y =

, Y �
2 , . . . , Y �

T

˜�
given a source feature vector sequence

=
ˆ
X�

1 , X�
2 , . . . , X�

T

˜�
is obtained by maximizing the

wing conditional distribution:

|X , λ) =
X

all m

p(m|X , λ)p(Y |X , m, λ) (3)

=

TY
t

MX
i

p(mt = i|X t, λ)p(Y t|X t, mt = i, λ)

(4)

re m = (m1, m2, . . . , mT ) is a mixture number sequence.
conditional distribution can also be written as GMM, and its
ut probability distribution is presented as follows:

p (Y t|X t, mt = i, λ) = N (Y t; Ei(t), Di) (5)
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Since the equation (3) includes latent variables, the optimal se-
quence of Y is estimated via the EM algorithm. The EM algorithm
is an iterative method for approximating the maximum likelihood
estimation. It maximizes the expectation of the complete data log-
likelihood so called Q-function (auxiliary function):

Q(Y , Ŷ ) =
X

all m

p(Y , m|X , λ) log p
“
Ŷ , m

˛̨
X , λ

”
(8)

Taking the derivative of the Q-function, the spectral sequence Ŷ
which maximizes the Q-function is given by

Ŷ =
“
D−1

”−1

D−1E (9)

where

D−1 = diag
h
D−1

1 , D−1
2 , · · · , D−1

T

i
(10)

D−1
t =

MX
i=1

γi(t)D
−1
i (11)

D−1E =
h
D−1E1

�
, D−1E2

�
, · · · , D−1ET

�i�
(12)

D−1Et =

MX
i=1

γi(t)D
−1
i Ei(t) (13)

γi(t) = p(mt = i|X t, Y t, λ) (14)

2.2. Maximum likelihood spectral estimation using dynamic
features

In this paper, we use the spectral estimation technique using dy-

namic features as described in [2]. Let X t =
ˆ
x�

t , Δx�
t

˜�
and Y t =

ˆ
y�

t , Δy�
t

˜�
be a source and a target feature vec-

tor with dynamic features, respectively. Where xt and yt de-
note static features, and the notation Δ · represents the first or-
der dynamic features calculated from the neighboring frames of
time t. The relation between the static feature vector sequence
y = [y�

1 , y�
2 , . . . , y�

T ]� and the static and dynamic feature vec-
tor sequence Y can be represented as a linear transformation:

Y = Wy (15)

where W is a matrix which concatenates dynamic features to the
static feature sequence y [4]. Under this condition, the optimal
static feature vector sequence ŷ which maximizes the Q-function
(equation (8)) is given by

ŷ =
“
W �D−1W

”−1

W �D−1E (16)

3. Voice Conversion Based on MFA
3.1. Factor Analysis

Factor Analysis (FA) is a statistical method for modeling the co-
variance structure of high dimensional data using a small number
of latent variables [5]. In FA, a d-dimensional observation vector
o is generated from a q-dimensional factor vector a(q < d) and
an observation noise(d dimension), that is

o = Ca + n (17)
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Figure 1: Structure of covariance matrix in MFA

re C is a d× q matrix called the factor loading matrix and q is
umber of factors. It is assumed that the factor a and the noise
e distributed according to a Gaussian distribution:

p (a) = N (0, I) (18)

p (n) = N (μ, R) (19)

re R is a diagonal matrix. The conditional probability of x
n a is written by

p (o|a) = N (Ca + μ, R) (20)

use if the variable a is fixed in equation (17), the product Ca
mes a constant vector which is added to the observation noise
or n. Therefore, the marginal distribution of x is calculated
ntegrating out the latent variable a

p (o) =

Z
p(o|a)p(a)da

= N
“
μ, CC� + R

”
(21)

the equation, it can be seen that FA is the Gaussian distribu-
with the constraint covariance matrix composed of the factor
ing matrix and the diagonal matrix R. Figure 1 shows the
traint structure of the covariance matrix.

Extension of FA to MFA

s an effective model for correlated data with Gaussian distri-
on provided the number of factors is appropriately selected.
ever, the data is not usually distributed according to a Gaus-
distribution. To deal with this problem, FA is often extended
e Mixtures of Factor Analyzers (MFA). MFA is defined as
ixtures of M factor analyzers. The likelihood of T indepen-

feature vector O =
ˆ
o�

1 , o�
2 , . . . , o�

t

˜�
for a M -component

λ = {wi, μi, C i, Ri|i = 1, 2, . . . , M} is given by

p (X |λ) =

TY
t

MX
i

Z
wipi(ot|a)pi(a)da

=
TY
t

MX
i

wiN
“
μi, C iC

�
i + Ri

”
(22)

ilarly to equation (22), MFA can be regarded as GMM in
h the covariance matrices are constrained by the factor load-

matrices C i and a diagonal matrix Ri. MFA with zero factor
uivalent to the diagonal covariance GMM, and as increasing

number of factors, MFA becomes similar to the full covari-
GMM. This means that MFA can be regarded as intermediate

el between GMM with diagonal covariance and with full co-
ance. Since MFA only differs from GMM in the structure of
riance matrices, MFA can be converted to the general GMM,
it can be easily applied to the GMM-based voice conversion by

acing the training process
“
Z = O,Σ

(Z)
i = C iC

�
i + Ri

”
.



3.3. EM algorithm for MFA

The maximum likelihood (ML) solution of MFA can be obtained
by the expectation maximization (EM) algorithm. The EM steps
for MFA parameters λ are summarized as follows.

3.3.1. E-step

The E-step calculates the expectation of the latent vector a:

〈ati〉 = E[at|ot, i] = βi(ot − μi) (23)

〈aati〉 = E
h
ata

�
t

˛̨
ot, i

i
= I − βiC i〈ati〉〈ati〉� (24)

and the posterior of the i-th mixture component:

γi(t) ∝ wiN
“
ot

˛̨
μi, C iC

�
i + Ri

”
(25)

where βi = C�
i

`
Ri + C iC

�
i

´−1
.

3.3.2. M-step

In the M-step, the new model parameters μ′
i, C ′

i, R′
i and w′

ican
be obtained by re-estimation formulas. Using the following repre-
sentations

C̃ i = (C i μi) (26)

ãti =

„
a
1

«
(27)

the re-estimation of C̃
′
i and R′

i can be written by

C̃
′
i =

 
TX
t
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!

·
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l

γi(l)〈ããli〉
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(28)
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t
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t
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“
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′
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”
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t

)

(29)

where

〈ãti〉 =

„ 〈ati〉
1

«
(30)

〈ããti〉 =

„ 〈aati〉 〈ati〉
〈ati〉 1

«
(31)

and diag(·) denotes the operator to set the off-diagonal elements
to zeros. The mixture weight w′

i is re-estimated as

w′
i =

1

T

TX
t

γi(t) (32)

4. Experimental Evaluation
4.1. Experimental conditions

Voice conversion experiments on the ATR Japanese speech
database were performed. Two male speakers are selected as a
source and a target speaker. One sentence uttered by the both
speakers was used for training and 50 sentences were used for
evaluation. The speech data were down-sampled from 20KHz to
16KHz, windowed at a 5-ms frame rate using a 25-ms Blackman
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Figure 2: Structure of covariance matrix for each model

ow, and parameterized into 24 mel-cepstral coefficients ex-
ing the zero-th coefficients and their first order derivative were
as the dynamic features. The parameters of the conventional

M were initialized using an LBG codebook. From preliminary
riments, the initial value of MFA parameters were determined
llows: The factor loading matrices were initialized with ran-
values. The covariance matrices of the noise factors are given

he global covariance. The number of factors and mixtures are
ed among 2, 8, 32, and 1, 2, 4, 8, 16, respectively.
Figure 2 shows the structure of covariance matrices for each
el. GMM-diag and GMM-full are GMM with diagonal and
covariance matrices, respectively. GMM-cross means GMM

covariance matrices which have the diagonal and cross-
riance elements. MFA is a generic MFA, and MFA-cross is

in which the covariance matrix of noise R is replaced with
of GMM-cross.
In this experiment, F0 sequences are converted by a simple
r conversion. Although the likelihood function in
tion (3) is calculated by taking the sum of all possible mix-
sequence m, it was approximated by a single sequence which
imizes the output probability p(m|X , λ).

Objective evaluation

mel-cepstral distortion (Mel-CD) was used as an objective
sure of the spectral conversion. The Mel-CD between the
et mel-cepstram and estimated one is given by the following
tion:

Mel-CD =
10

log 10

vuut2

24X
d=1

“
mc

(t)
d − mc

(e)
d

”2

(33)

re mc
(t)
d and mc

(e)
d denote the d-th coefficient of the target

the estimated mel-cepstra, respectively.
Figure 3 and 4 show the Mel-CD obtained by the spectral con-
ion with various structures of GMM and MFA. In the figures,
line indicates the change of the distortion with increasing the

ber of mixtures while keeping the number of factors fixed. In
re 3, GMM-full with single mixture obtained a lower Mel-CD
GMM-diag due to the availability of the correlation. How-

, the performance of GMM-full was degraded as increasing
umber of mixtures, because the lack of training data for each

ture components reduced the estimation accuracy. It can be
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Figure 3: Mel-CD of the conversion with GMM and MFA
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also seen that the lines MFA is almost smoothly connected from
GMM-diag to GMM-full as increasing the number of factors. This
result confirms that MFA is intermediate model between GMM-
diag and GMM-full, and by setting the appropriate number of fac-
tors and mixtures, MFA can improve the conversion accuracy.

Comparing GMM-cross with GMM-diag, the conversion ac-
curacy of GMM-cross is better than GMM-diag. This result in-
dicates that the diagonal elements of the cross-covariance are im-
portant for converting spectral features. Although both MFA and
GMM-full can also represent the cross-covariance elements, MFA
achieved an efficient modeling from a limited amount of data, due
to the structure of the loading matrices.

From Figure 4, it seems that MFA-cross is better than MFA
especially in the case that the number of factors is small. This is
because MFA-cross can represent the diagonal elements of cross-
covariance by using noise vector as well as GMM-cross. Further-
more, MFA-cross obtained a lower Mel-CD than GMM-cross in
the same number of parameters, because MFA-cross can represent
not only the diagonal elements of cross-covariance but also non-
diagonal elements of covariance matrices.

4.3. Subjective evaluation

A DMOS (Differential Mean Opinion Score) test was performed
for evaluating the similarity between the target and converted
speech in speaker characteristics. In the test, the opinion score was
set to a 5-point scale. Ten sentences were used for the evaluation
set, and the number of listeners was 13.

Figure 5 shows the result of the DMOS test. For each model,
the number of mixtures with the lowest Mel-CD in the objective
test was selected. Although there is a large difference in the num-
ber of parameters, the score was not improved even if the num-
ber of mixtures was increased in preliminary experiments. It can
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Figure 5: Result of DMOS test

een that GMM-full achieved a significantly higher score than
M-diag. Although GMM-cross is better than GMM-full in the
ctive test, it could not improve the performance accuracy in the
ective test. In the results of MFA and MFA-cross, the score is
roved as increasing the number of factors. Comparing MFA
MFA-cross, MFA-cross achieved a higher score than MFA in
umber of factors. Although the score of MFA-cross with 32
rs is similar or slightly better than GMM-full, the number of

meters is significantly reduced. This means that the appropri-
odel structure was given dependently of the amount of train-

data.

5. Conclusion
is paper, we proposed the voice conversion technique based
FA. MFA can represent intermediate model between diago-

nd full covariance GMM. In the objective test, the Mel-CD be-
n the target and the estimated features was decreased by using
-cross. Although the score of MFA-cross in the DMOS test

milar or slightly better than full covariance GMM, MFA-cross
reduce the number of parameters and provide an appropriate
el structure dependently of the amount of training data. Future
ks will focus on investigation parameter sharing of MFA.
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