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Abstract

The present paper describes a corpus-based singing voice syn-
thesis system based on hidden Markov models (HMMs). This
system employs the HMM-based speech synthesis to synthesize
singing voice. Musical information such as lyrics, tones, durations
is modeled simultaneously in a unified framework of the context-
dependent HMM. It can mimic the voice quality and singing style
of the original singer. Results of a singing voice synthesis exper-
iment show that the proposed system can synthesize smooth and
natural-sounding singing voice.
Index Terms: singing voice synthesis, HMM, time-lag model.

1. Introduction
In recent years, various applications of speech synthesis systems
have been proposed and investigated. Singing voice synthesis is
one of the hot topics in this area [1–5]. However, only a few
corpus-based singing voice synthesis systems which can be con-
structed automatically have been proposed.

Currently, there are two main paradigms in the corpus-based
speech synthesis area: sample-based approach and statistical ap-
proach. The sample-based approach such as unit selection [6]
can synthesize high-quality speech. However, it requires a huge
amount of training data to realize various voice characteristics. On
the other hand, the quality of statistical approach such as HMM-
based speech synthesis [7] is buzzy because it is based on a vocod-
ing technique. However, it is smooth and stable, and its voice char-
acteristics can easily be modified by transforming HMM parame-
ters appropriately. For singing voice synthesis, applying the unit
selection seems to be difficult because a huge amount of singing
speech which covers vast combinations of contextual factors that
affect singing voice has to be recorded. On the other hand, the
HMM-based system can be constructed using a relatively small
amount of training data. From this point of view, the HMM-based
approach seems to be more suitable for the singing voice synthe-
sizer. In the present paper, we apply the HMM-based synthesis
approach to singing voice synthesis.

Although the singing voice synthesis system proposed in the
present paper is quite similar to the HMM-based text-to-speech
synthesis system [7], there are two main differences between them.
In the HMM-based text-to-speech synthesis system, contextual
factors which may affect reading speech (e.g. phonemes, sylla-
bles, words, phrases, etc.) are taken into account. However, con-
textual factors which may affect singing voice should be different
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Figure 1: An example of “time-lag.”

those used in text-to-speech synthesis. Therefore, in the pro-
d system, contextual factors which may affect singing speech
tones, lyrics, and durations) are used. Another difference is
duction of an additional model to control start timing of each
ical note. In human singing voices, there are differences be-
n start timings of musical notes and speech as shown in Figure
the present paper, we call them “time-lags.” The time-lag can
negative values if its start timing is earlier than that of corre-
ding musical note. Since this could be an important factor to
hesize natural-sounding singing voice, they are modeled ex-
tly by time-lag models in the proposed system.
The rest of the present paper is organized as follows: Section 2
ribes the HMM-based singing voice synthesis system. Details
me-lag models are described in Section 2.3. Section 3 shows
lts of a singing voice synthesis experiment. Conclusions and
re plans are shown in the final section.

2. HMM-based Singing Voice Synthesis
System

System Overview

re 2 shows the overview of the HMM-based singing voice syn-
is system. It consists of training and synthesis parts.
In the training part, first we extract spectral (e.g., mel-cepstral
ficients [8]) and excitation (e.g., fundamental frequencies) pa-
eters from a singing voice database and then they are modeled
ontext-dependent HMMs. Context-dependent state duration
els and time-lag models are also estimated.
In the synthesis part, first an arbitrarily given musical score in-
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Figure 2: The overview of the HMM-based singing voice synthesis
system.

cluding lyric to be synthesized is converted to a context-dependent
label sequence. Secondly, according to the label sequence, a
song HMM is constructed by concatenating the context-dependent
HMMs. Thirdly, state durations of the song HMM are determined
with respect not only to the state duration models but also to the
time-lag models. Fourthly, spectral and excitation parameters are
generated by the speech parameter generation algorithm [9]. Fi-
nally, a speech waveform is synthesized directly from the gener-
ated spectral and excitation parameters using Mel Log Spectrum
Approximation (MLSA) filter [10].

This system is quite similar to the HMM-based text-to-speech
synthesis system [7]. However, there are two main differences be-
tween them: contextual factors and time-lag models. In the fol-
lowing, details of them are described.

2.2. Contextual Factors

In the HMM-based text-to-speech synthesis system, contextual
factors which may affect reading speech such as phoneme iden-
tity, part-of-speech, accent, stress, etc. have been taken into ac-
count [7]. However, contextual factors that affect singing voice
should be different from those used in text-to-speech synthesis. In
the present paper, the following contextual factors were consid-
ered:

phoneme: The preceding, current, and succeeding phonemes.

tone: The musical tones of the preceding, current, and succeeding
musical notes (e.g. “A4”, “C5#”, “B3�”, etc.).

duration: The durations of the preceding, current, and succeed-
ing musical notes (in 100 ms unit).

position: The positions of the preceding, current, and succeeding
musical notes in the corresponding musical bar (in triplet
thirty-second note).

These contexts can automatically be determined from the mu-
sical score including lyric.
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Figure 3: Time-lag modeling.

Time-lag Modeling

ther unique feature in the proposed system is time-lag model-
In the case of singing voice synthesis, we have to obey rhythm
mpo of the music. Therefore, start timing of musical notes or
eme durations in each musical note should be determined ac-
ing to the musical score. However, if the score is strictly fol-
d, the synthetic singing voice will be unnatural because there

time-lags between start timings of musical score and real hu-
speech (see Fig. 1).

To model this phenomenon, we introduce “time-lag models.”
r training context-dependent HMMs, the forced alignment is
ormed to the training data to obtain time-lags between musical
s and real human speech. We assign context-dependent labels
lar to those described in 2.2 to the obtained time-lags. Then
are clustered by a decision tree in the same manner used for

tering spectral, fundamental frequency and duration parame-
[7, 11]. As a result, we obtain decision-tree-clustered context-
ndent time-lag models (one-dimensional Gaussians). Figure
ows its overview.
In the synthesis stage, first we determine the duration of each
ical note from the given score including lyric to be synthe-
d. Then, the time-lags of musical notes and state durations of
ong HMM are determined simultaneously so as to maximize
oint probability of time-lags and state durations:

, g | T , Λ) = P (d | g, T , Λ) · P (g | Λ) (1)

=

NY
k=1

P (dk | Tk, gk, gk−1, Λ) · P (gk | Λ), (2)



where N denotes the total number of musical notes in this song, dk

denotes the state durations in the k-th musical note, Tk denotes the
duration of the k-th musical note determined from the given mu-
sical score, and gk denotes the time-lag of the start timing on the
k+1-th musical note. Note that g0 = gN = 0 since the correspond-
ing boundaries are the beginning and the end of the musical score.
The time-lags g and state durations d which maximize Eq.(1) can
be obtained by solving the following a set of linear equations:

Ag = b (3)

dk = μdk + ρk · diag−1 (Σdk) , (4)

where

ai,i = −1 −

K·ni+1X
t=1

σ2
d(i+1),t

K·niX
t=1

σ2
di,t

−

K·ni+1X
t=1

σ2
d(i+1),t

σ2
gi

, (5)

a(i+1),i =

K·ni+1X
t=1

σ2
d(i+1),t

K·niX
t=1

σ2
di,t

, (6)

ai,(i+1) = 1, (7)

ai,j = 0 (j �= i ± 1, j �= i), (8)

bi =

K·ni+1X
t=1

σ2
d(i+1),t

K·niX
t=1

σ2
di,t

 
Ti −

K·niX
t=1

μdi,t

!

−
0
@Ti+1 −

K·ni+1X
t=1

μd(i+1),t

1
A−

K·ni+1X
t=1

σ2
d(i+1),t

σ2
gi

μgi , (9)

(1 ≤ i ≤ N−1, 1 ≤ j ≤ N−1)

ρk =

(Tk − gk−1 + gk) −
K·nkX
t=1

μ2
dk,t

K·nkX
t=1

σ2
dk,t

. (10)

In the above equations, nk denotes a number of phonemes in the k-
th musical note, K denotes the number of states in each phoneme
HMM, ai,j denotes the (i, j)-th element of A, bi denotes the i-th
element of b, μdk,t and σ2

dk,t
denotes the mean and the variance

of the duration model of the t-th state duration in the k-th musi-
cal note, respectively, μdk and Σdk denotes the mean vector and
the diagonal covariance matrix of the duration model in the k-th
musical note, respectively. Since A becomes an asymmetric tri-
diagonal matrix, Eq.(3) can easily be solved by a fast algorithm.
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Table 1: Singing voice database.

Singer 1 male (non-professional)
Songs 60 Japanese children’s songs

(about 72minutes in total)
Sampling Rate 44.1kHz
Quantization 16bit

Table 2: Mel-cepstral analysis condition.

Sampling Rate 16kHz
Frame Shift 5ms

Window Length 25ms
Window Function Blackman Window
Spectral Feature 24 mel-cepstral analysis [8]

3. Experiment

Experimental Conditions

ough a variety of reading speech databases were available, we
d not find any appropriate singing voice database. Therefore,
ecorded a singing voice database by ourselves. The overview
is database is summarized in Table 1. To improve the qual-
f the database, phoneme boundaries, fundamental frequencies
, and musical scores were manually corrected.
The speech analysis conditions are shown in Table 2. Each
re vector consisted of spectrum and F0 parameter vectors:
spectrum parameter vector consisted of 0–24th mel-cepstral

ficients, their delta and delta-delta coefficients, and the F0

meter vector consisted of log F0, its delta and delta-delta.
used the five-state left-to-right with no-skip HMM structure.
ty-six Japanese phonemes including silence and pause were
. The decision-tree based context clustering was applied to
trum, F0, duration and time-lag models, separately. We used

DL criterion to stop tree growth. The resultant trees of spec-
, F0, duration and time-lag models had 4264, 2477, 197, and
leaf nodes, respectively.

Singing Voice Synthesis Experiment

sing estimated HMMs, we synthesized singing voices. As a
lt, smooth and natural-sounding synthetic singing voice was
ined. Samples of synthesized singing voice are available at
. It shows that the HMM-based speech synthesis system was
essfully applied to the singing voice synthesis. Figure 4 plots
xample of F0 pattern of a synthetic singing voice. It shows
generated F0 pattern was slightly lower than the F0 pattern
ed by the musical score. This is because the original singer
a tendency to sing a little flat, and it was confirmed that the
ency was successfully reflected to the synthetic voice by the
em.
Effects of the use of time-lag models can be seen in Fig. 5. It is

n that human singing voice has a tendency to start consonants
tle earlier than the timing of musical note if the note start with
onants. Figure 5 shows that the start timings of each musical
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Figure 4: An example of generated F0 pattern.
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Figure 5: An example of synthetic singing voice waveform.

note have been controlled according to the tendency by the time-
lag models.

To evaluate the effectiveness of time-lag models, we con-
ducted a subjective listening test. Ten songs not included in the
training data were divided every four to six musical bars. As a re-
sult, we obtained 27 musical phrases. Then we synthesized singing
voices from the HMMs with and without using the time-lag mod-
els. Fourteen subjects were asked to rate the naturalness of synthe-
sized singing voices on Mean Opinion Score (MOS) with a scale
from 1 (poor) to 5 (good). For each subject, randomly selected
15 musical phrases were presented. Experiments were carried out
in a sound-proof room. Speech samples were played with a click
for every quoter note synchronized to the corresponding musical
score. Figure 6 shows the experimental results. It can be seen
from the figure that the introduction of the time-lag models im-
proved the naturalness of synthetic singing voice. Interestingly,
many listeners said that the characteristics of the original singer
had been found in the synthetic voice.

4. Conclusions

In the present paper, a corpus-based singing voice synthesis system
based on hidden Markov models (HMMs) was proposed. This sys-
tem employed the HMM-based speech synthesis method to synthe-
size singing voice. Musical information such as lyrics, tone, dura-
tion was modeled simultaneously in a unified framework of the
context-dependent HMM. Experimental results showed that the
proposed system could mimic the voice quality and singing style
of the original singer and natural-sounding singing voice could be
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hesized.
In the present paper, only four contextual factors were consid-
. However, other kinds of contextual factors such as dynamics
ld be included to improve the ability of this system. Future

k will focus on the use of these kinds of contextual factors.
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